947 resultados para Rotating Inertia.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the capital structure adjustment dynamics of listed non-financial corporations in seven east Asian countries before, during and after the crisis of 1997–1998. Our methodology allows for speeds of adjustment to vary, not only among firms, but also over time, distinguishing between cases of sudden and smooth adjustment.Whereas, compared with firms in the least affected countries, average leverages were much higher, generalized method-ofmoments analysis of the Worldscope panel data suggests that average speeds of adjustment were lower in the worst affected countries. This holds also for the severely financially distressed firms in some worst affected countries, though the trend reversed in the post-crisis period. These findings have important implications for the regulatory environment as well as access to market finance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work has been to investigate the behaviour of a continuous rotating annular chromatograph (CRAC) under a combined biochemical reaction and separation duty. Two biochemical reactions have been employed, namely the inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the saccharification of liquefied starch to maltose and dextrin using the enzyme maltogenase. Simultaneous biochemical reaction and separation has been successfully carried out for the first time in a CRAC by inverting sucrose to fructose and glucose using the enzyme invertase and collecting continuously pure fractions of glucose and fructose from the base of the column. The CRAC was made of two concentric cylinders which form an annulus 140 cm long by 1.2 cm wide, giving an annular space of 14.5 dm3. The ion exchange resin used was an industrial grade calcium form Dowex 50W-X4 with a mean diameter of 150 microns. The mobile phase used was deionised and dearated water and contained the appropriate enzyme. The annular column was slowly rotated at speeds of up to 240°h-1 while the sucrose substrate was fed continuously through a stationary feed pipe to the top of the resin bed. A systematic investigation of the factors affecting the performance of the CRAC under simultaneous biochemical reaction and separation conditions was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were found to be the feed rate, feed concentrations and eluent rate. Results from the experiments indicated that complete conversion could be achieved for feed concentrations of up to 50% w/v sucrose and at feed throughputs of up to 17.2 kg sucrose per m3 resin/h. The second enzymic reaction, namely the saccharification of liquefied starch to maltose employing the enzyme maltogenase has also been successfully carried out on a CRAC. Results from the experiments using soluble potato starch showed that conversions of up to 79% were obtained for a feed concentration of 15.5% w/v at a feed flowrate of 400 cm3/h. The product maltose obtained was over 95% pure. Mathematical modelling and computer simulation of the sucrose inversion system has been carried out. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes an investigation which was carried out under the Interdisciplinary Higher Degres (IHD) Scheme of The University of Aston in Birmingham. The investigation, which involved joint collaboration between the IHD scheme, the Department of Mechanical Engineering, and G.E.C. Turbine Generators Limited, was concerned with hydrostatic bearing characteristics and of how hydrostatic bearings could be used to enable turbine generator rotor support impedances to be controlled to give an improved rotor dynamic response. Turbine generator rotor critical speeds are determined not only by the mass and flexibility of the rotor itself, which are relatively easily predicted, but also by the dynamic characteristics of the bearing oil film, pedestal, and foundations. It is because of the difficulty in accurately predicting the rotor support characteristics that the designer has a problem in ensuring that a rotor's normal running speed is not close to one of its critical speeds. The consequence of this situation is that some rotors do have critical speeds close to their normal running speed and the resulting high levels of vibration cause noise, high rotor stresses, and a shortening of bearing life. A combined theoretical and experimental investigation of the effects of mounting the normal rotor journal bearing in a hydrostatic bearing was carried out. The purpose of the work was to show that by changing the oil flow resistance offered by capillaries connecting accumulators to the hydrostatic bearing, the overall rotor support characteristics could be tuned to enable rotor critical speeds to be moved at will. Testing of a combined journal and hydrostatic bearing has confirmed the theory of its operation and a theoretical study of a full size machine showed that its critical speed could be moved by over 350 rpm and that its rotor vibration at running speed could be reduced by 80%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotating fluidised Beds offer the potential for high intensity combustion, large turndown and extended range of fluidising velocity due to the imposition of an artificial gravitational field. Low thermal capacity should also allow rapid response to load changes. This thesis describes investigations of the validity of these potential virtues. Experiments, at atmospheric pressure, were conducted in flow visualisation rigs and a combustor designed to accommodate a distributor 200mm diameter and 80mm axial length. Ancillary experiments were conducted in a 6" diameter conventional fluidised bed. The investigations encompassed assessment of; fluidisation and elutriation, coal feed requirements, start-up and steady-state combustion using premixed propane and air, transition from propane to coal combustion and mechanical design. Assessments were made of an elutriation model and some effects of particle size on the combustion of premixed fuel gas and air. The findings were: a) more reliable start-up and control methods must be developed. Combustion of premixed propane and air led to severe mechanical and operating problems. Manual control of coal combustion was inadequate. b) Design criteria must encompass pressure loss, mechanical strength and high temperature resistance. The flow characteristics of ancillaries and the distributor must be matcheo. c) Fluidisation of a range of particle sizes was investigated. New correlations for minimum fluidisation and fully supported velocities are proposed. Some effects on elutriation of particle size and the distance between the bed surface and exhaust port have been identified. A conic distributor did not aid initial bed distribution. Furthermore, airflow instability was encountered with this distributor shape. Future use of conic distributors is not recommended. Axial solids mixing was found to be poor. A coal feeder was developed which produced uniform fuel distribution throughout the bed. The report concludes that small scale inhibits development of mechanical design and exploration of performance. future research requires larger combustors and automatic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports the results of DEM (Discrete Element Method) simulations of rotating drums operated in a number of different flow regimes. DEM simulations of drum granulation have also been conducted. The aim was to demonstrate that a realistic simulation is possible, and further understanding of the particle motion and granulation processes in a rotating drum. The simulation model has shown good qualitative and quantitative agreement with other published experimental results. A two-dimensional bed of 5000 disc particles, with properties similar to glass has been simulated in the rolling mode (Froude number 0.0076) with a fractional drum fill of approximately 30%. Particle velocity fields in the cascading layer, bed cross-section, and at the drum wall have shown good agreement with experimental PEPT data. Particle avalanches in the cascading layer have been shown to be consistent with single layers of particles cascading down the free surface towards the drum wall. Particle slip at the drum wall has been shown to depend on angular position, and ranged from 20% at the toe and shoulder, to less than 1% at the mid-point. Three-dimensional DEM simulations of a moderately cascading bed of 50,000 spherical elastic particles (Froude number 0.83) with a fractional fill of approximately 30% have also been performed. The drum axis was inclined by 50 to the horizontal with periodic boundaries at the ends of the drum. The mean period of bed circulation was found to be 0.28s. A liquid binder was added to the system using a spray model based on the concept of a wet surface energy. Granule formation and breakage processes have been demonstrated in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.