974 resultados para Reverse transcriptase-polymerase chain reaction
Resumo:
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past approximately 63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome-derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function.
Resumo:
Background: Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results: Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions: The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Resumo:
Rho GTPases integrate control of cell structure and adhesion with downstream signaling events. In keratinocytes, RhoA is activated at early times of differentiation and plays an essential function in establishment of cell-cell adhesion. We report here that, surprisingly, Rho signaling suppresses downstream gene expression events associated with differentiation. Similar inhibitory effects are exerted by a specific Rho effector, CRIK (Citron kinase), which is selectively down-modulated with differentiation, thereby allowing the normal process to occur. The suppressing function of Rho/CRIK on differentiation is associated with induction of KyoT1/2, a LIM domain protein gene implicated in integrin-mediated processes and/or Notch signaling. Like activated Rho and CRIK, elevated KyoT1/2 expression suppresses differentiation. Thus, Rho signaling exerts an unexpectedly complex role in keratinocyte differentiation, which is coupled with induction of KyoT1/2, a LIM domain protein gene with a potentially important role in control of cell self renewal.
Resumo:
Gene expression-based prediction of genomic copy number aberrations in the chromosomal region 12q13 to 12q15 that is flanked by MDM2 and CDK4 identified Wnt inhibitory factor 1 (WIF1) as a candidate tumor suppressor gene in glioblastoma. WIF1 encodes a secreted Wnt antagonist and was strongly downregulated in most glioblastomas as compared with normal brain, implying deregulation of Wnt signaling, which is associated with cancer. WIF1 silencing was mediated by deletion (7/69, 10%) or epigenetic silencing by promoter hypermethylation (29/110, 26%). Co-amplification of MDM2 and CDK4 that is present in 10% of glioblastomas was associated in most cases with deletion of the whole genomic region enclosed, including the WIF1 locus. This interesting pathogenetic constellation targets the RB and p53 tumor suppressor pathways in tandem, while simultaneously activating oncogenic Wnt signaling. Ectopic expression of WIF1 in glioblastoma cell lines revealed a dose-dependent decrease of Wnt pathway activity. Furthermore, WIF1 expression inhibited cell proliferation in vitro, reduced anchorage-independent growth in soft agar, and completely abolished tumorigenicity in vivo. Interestingly, WIF1 overexpression in glioblastoma cells induced a senescence-like phenotype that was dose dependent. These results provide evidence that WIF1 has tumor suppressing properties. Downregulation of WIF1 in 75% of glioblastomas indicates frequent involvement of aberrant Wnt signaling and, hence, may render glioblastomas sensitive to inhibitors of Wnt signaling, potentially by diverting the tumor cells into a senescence-like state.
Resumo:
Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.
Resumo:
Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems’ locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
Resumo:
Mayaro virus (MAYV) is frequently reported in Pan-Amazonia. The aim of this study was to investigate the circulation of alphaviruses during a dengue outbreak in the state of Mato Grosso, Brazil. Serum samples from dengue-suspected patients were subjected to multiplex semi-nested reverse transcriptase polymerase chain reaction for 11 flaviviruses and five alphaviruses, to nucleotide sequencing and to viral isolation. MAYV was detected in 15 (2.5%) of 604 patients. Twelve were co-infected with dengue virus 4, which was isolated from 10 patients. The molecular detection of MAYV in dengue-suspected patients suggests that other arboviruses may be silently circulating during dengue outbreaks in Brazil.
Resumo:
Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.
Resumo:
Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8(+) T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.
Resumo:
Anaplastic large cell lymphoma (ALCL) is a main type of T-cell lymphomas and comprises three distinct entities: systemic anaplastic lymphoma kinase (ALK) positive, systemic ALK(-) and cutaneous ALK(-) ALCL (cALCL). Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK(-) ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of five ALK(+) and four ALK(-) systemic ALCL, seven cALCL and sixteen cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4(+), CD8(+) or CD30(+) T-cell origin. Indeed, ALCL display a down-modulation of many T-cell characteristic molecules. All ALCL types show significant expression of NFkappaB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly, few genes are differentially expressed between systemic and cALCL despite their different clinical behaviour, and between ALK(-) ALCL and cHL despite their different cellular origin. ALK(+) ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.
Resumo:
Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects.
Resumo:
Although it is well established that early expression of TCRbeta transgenes in the thymus leads to efficient inhibition of both endogenous TCRbeta and TCRgamma rearrangement (also known as allelic and "isotypic" exclusion, respectively) the role of pTalpha in these processes remains controversial. Here, we have systematically re-evaluated this issue using three independent strains of TCRbeta-transgenic mice that differ widely in transgene expression levels, and a sensitive intracellular staining assay that detects endogenous TCRVbeta expression in individual immature thymocytes. In the absence of pTalpha, both allelic and isotypic exclusion were reversed in all three TCRbeta-transgenic strains, clearly demonstrating a general requirement for pre-TCR signaling in the inhibition of endogenous TCRbeta and TCRgamma rearrangement. Both allelic and isotypic exclusion were pTalpha dose dependent when transgenic TCRbeta levels were subphysiological. Moreover, pTalpha-dependent allelic and isotypic exclusion occurred in both alphabeta and gammadelta T cell lineages, indicating that pre-TCR signaling can potentially be functional in gammadelta precursors. Finally, levels of endogenous RAG1 and RAG2 were not down-regulated in TCRbeta-transgenic immature thymocytes undergoing allelic or isotypic exclusion. Collectively, our data reveal a critical but lineage-nonspecific role for pTalpha in mediating both allelic and isotypic exclusion in TCRbeta-transgenic mice.