929 resultados para Resting energy expenditure


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examined the validity of current Actical activity energy expenditure (AEE) equations and intensity cut-points in preschoolers using AEE and direct observation as criterion measures. Forty 4–6-year-olds (5.3 ± 1.0 years) completed a ~150-min room calorimeter protocol involving age-appropriate sedentary behaviours (SBs), light intensity physical activities (LPAs) and moderate-to-vigorous intensity physical activities (MVPAs). AEE and/or physical activity intensity were calculated using Actical equations and cut-points by Adolph, Evenson, Pfeiffer and Puyau. Predictive validity was examined using paired sample t-tests. Classification accuracy was evaluated using weighted kappas, sensitivity, specificity and area under the receiver operating characteristic curve. The Pfeiffer equation significantly overestimated AEE during SB and underestimated AEE during LPA (P < 0.0125 for both). There was no significant difference between measured and predicted AEEs during MVPA. The Adolph cut-point showed significantly higher accuracy for classifying SB, LPA and MVPA than all others. The available Actical equation does not provide accurate estimates of AEE across all intensities in preschoolers. However, the Pfeiffer equation performed reasonably well for MVPA. Using cut-points of ≤6 counts · 15 s−1, 7–286 counts · 15 s−1 and ≥ 287 counts · 15 s−1 when classifying SB, LPA and MVPA, respectively, is recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light-intensity physical activity (LIPA) accounts for much of adults' waking hours (≈40%) and substantially contributes to overall daily energy expenditure. Encompassing activity behaviours of low intensity (standing with little movement) through to those with a higher intensity (slow walking), LIPA is ubiquitous, yet little is known about how associations with health may vary depending on its intensity. We examined the associations of objectively assessed LIPA, categorized as either low- or high- LIPA, and MVPA, with cardiometabolic risk biomarkers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body mass index (BMI) (kg/m(2)) is used internationally to assess body mass or adiposity. However, BMI does not discriminate body fat content or distribution and may vary among ethnicities. Many women with normal BMI are considered healthy, but may have an unidentified "hidden fat" profile associated with higher metabolic disease risk. If only BMI is used to indicate healthy body size, it may fail to predict underlying risks of diseases of lifestyle among population subgroups with normal BMI and different adiposity levels or distributions. Higher body fat levels are often attributed to excessive dietary intake and/or inadequate physical activity. These environmental influences regulate genes and proteins that alter energy expenditure/storage. Micro ribonucleic acid (miRNAs) can influence these genes and proteins, are sensitive to diet and exercise and may influence the varied metabolic responses observed between individuals. The study aims are to investigate associations between different body fat profiles and metabolic disease risk; dietary and physical activity patterns as predictors of body fat profiles; and whether these risk factors are associated with the expression of microRNAs related to energy expenditure or fat storage in young New Zealand women. Given the rising prevalence of obesity globally, this research will address a unique gap of knowledge in obesity research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To compare the cumulative (3-day) effect of prolonged sitting on metabolic responses during a mixed meal tolerance test (MTT), with sitting that is regularly interrupted with brief bouts of light-intensity walking. Overweight/obese adults (n=19) were recruited for a randomized, 3-day, outpatient, cross-over trial involving: (1) 7-h days of uninterrupted sitting (SIT); and (2) 7-h days of sitting with light-intensity activity breaks [BREAKS; 2-min of treadmill walking (3.2 km/h) every 20 min (total: 17 breaks/day)]. On days 1 and 3, participants underwent a MTT (75 g of carbohydrate, 50 g of fat) and the incremental area under the curve (iAUC) was calculated from hourly blood samples. Generalized estimating equation (GEE) models were adjusted for gender, body mass index (BMI), energy intake, treatment order and pre-prandial values to determine effects of time, condition and time × condition. The glucose iAUC was 1.3 ± 0.5 and 1.5 ± 0.5 mmol·h·l(-1) (mean differences ± S.E.M.) higher in SIT compared with BREAKS on days 1 and 3 respectively (condition effect: P=0.001), with no effect of time (P=0.48) or time × condition (P=0.8). The insulin iAUC was also higher on both days in SIT (day 1: ∆151 ± 73, day 3: ∆91 ± 73 pmol·h·l(-1), P=0.01), with no effect of time (P=0.52) or time × condition (P=0.71). There was no between-treatment difference in triglycerides (triacylglycerols) iAUC. There were significant between-condition effects but no temporal change in metabolic responses to MTT, indicating that breaking up of sitting over 3 days sustains, but does not enhance, the lowering of postprandial glucose and insulin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sago pondweed (Potamogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving-up densities within the confines of one lake was nearly eightfold, the giving-up density being positively related to water depth and, to a lesser extent, the silt content of the sediment. The swans' preference (measured as cumulative foraging pressure) was negatively related to these variables. We adjusted a model developed for diving birds to predict changes in the time allocation of foraging swans with changes in power requirements and harvest rate. First, we compared the behavior of free-living swans foraging in shallow and deep water, where they feed by head-dipping and up-ending, respectively. Up-ending swans had 1.3-2.1 times longer feeding times than head-dipping swans. This was contrary to our expectation, since the model predicted a decrease in feeding time with an increase in feeding power. However, up-ending swans also had 1.9 times longer trampling times than headdipping swans. The model predicted a strong positive correlation between trampling time and feeding time, and the longer trampling times may thus have masked any effect of an increase in feeding power. Heart rate measurements showed that trampling was the most energetically costly part of foraging. However, because the feeding time and trampling time changed concurrently, the rate of energy expenditure was only slightly higher in deep water (1.03-1.06 times). This is a conservative estimate since it does not take into account that the feeding costs of up-ending are possibly higher than that of head-dipping. Second, we compared captive swans foraging on sandy and clayey sediments. We found that the harvest rate on clayey sediment was only 0.6 times that on sandy sediment and that the power requirements for foraging were 1.2-1.4 times greater. Our results are in qualitative agreement with the hypothesis that the large spatial variation in giving-up densities was caused by differences in net rates of energy intake. This potentially has important implications for the prey dynamics, because plant regrowth has been shown to be related to the same habitat factors (water depth and sediment type).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy budgets for nestling growth are presented for sandwich tern Sterna sandvicensis, common tern S. hirundo, Arctic tern S. paradisaea, and herring gull Larus argentatus. Energy used in the production of body tissue averaged 27% (of which 7% for biosynthesis) while BMR accounted for 45%, the remainder being cost of activity and thermoregulation (28%). Where quantified, cost of temperature regulation accounted for only 10% of the total expenditure under field conditions. A regression made of metabolic energy (ME) intake over the entire nestling period against body mass of the fledgling based on eight studies of gulls and terns resulted in ME=35.14×M1.0105. -from Authors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basal metabolic rate (BMR) of Old World long-distance-migrant shorebirds has been found to vary along their migration route. On average, BMR is highest in the Arctic at the start of fall migration, intermediate at temperate latitudes, and lowest on the tropical wintering grounds. As a test of the generality of this pattern, we measured the BMR of one adult and 44 juvenile shorebirds of 10 species (1-18 individuals of each species, body-mass range 19-94 g) during the first part of their southward migration in the Canadian Arctic (68-76°N). The interspecific relationship between BMR and body mass was almost identical to that found for juvenile shorebirds in the Eurasian Arctic (5 species), although only one species appeared in both data sets. We conclude that high BMR of shorebirds in the Arctic is a circumpolar phenomenon. The most likely explanation is that the high BMR reflects physiological adaptations to low ambient temperatures. Whether the BMR of New World shorebirds drops during southward migration remains to be investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molting females of Monteiro's Hornbills (Tockus monteiri) seal themselves in nest cavities to breed until chicks are about half grown. To gain insight into the chronology of energy requirements of the Monteiro's Hornbill family unit in relation to this peculiar breeding strategy, we measured a number of ecological, physiological, and environmental variables during the Monteiro's Hornbill's breeding season. Those measurements included rates of energy expenditure of female Monteiro's Hornbills while in the nest cavity, characterizing their thermal environment, timing of egg laying, molt, hatching and fledging of chicks, as well as measuring clutch size and chick growth. Temperatures within the nest box varied between 12 and 39°C and did not affect the female energy expenditure. Female body mass and energy expenditure averaged 319 g and 5 W, respectively, at the start of concealment and decreased by on average 1.1 g day -1 and 0.05 W day -1 during at least the first 30 days of the 52-58 day concealment period. Clutch size varied between 1 and 8 and averaged 4.1 eggs, with eggs averaging only 66% of the mass predicted for a bird of this size. Over the range of chick ages at which the female might leave the nest, the predicted energy requirements for maintenance and tissue growth for a Monteiro's Hornbill chick increase sharply from 1.2 W at age 8 to 3.0 W at age 25. Reduction of the female energy requirement with time, the relatively low growth rate and therewith low energy requirements of Monteiro's Hornbill chicks, and an appropriate timing of the female's exodus from the nest cavity all aid in containing peak energy demands to levels that are sustainable for the food provisioning male.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During their autumn migratory phase, thrush nightingales (Luscinia luscinia) previously starved for 2 d were allowed to refuel under three different ambient temperature conditions (-7 degrees, 7 degrees, and 22 degrees C). During the refueling period, as well as during the preceding control and starvation periods, food intake, body mass, and feces production were monitored. In addition, daily energy expenditure was measured during the refueling period. The compilation of the energy balance during the refueling period revealed an energy density of the deposited tissue of 33.6 kJ g-1. Assuming that the deposited tissue consists of fat and protein exclusively, with energy densities of 39.6 and 5.5 kJ g-1 wet mass, respectively, we estimated the deposited tissue to consist of 82% fat and 18% wet protein (6% dry protein and 12% water). Nitrogen balances during control, starvation, and refueling phases and during a period of prolonged and complete starvation indicated that 5% of the nutrient stores consisted of dry protein. Our results support recent findings that nutrient stores for migration often contain protein in addition to fat and consequently are 15%-25% less energy rich than pure fat stores. These proteins might be stored as muscle or other functional tissue and may be required to support the extra mass of the stores and/or reflect an incapacity of the metabolic machinery to catabolize far exclusively. Fuel deposition rate was positively related with ambient temperature, whereas food intake rate was unaffected by temperature. These results indicate that the rate of fuel deposition is limited by a ceiling in food intake rate; when this ceiling is reached, fuel deposition rate is negatively affected by daily energy expenditure rate. To a certain extent, the ceiling in food intake rate varies depending on feeding conditions over the previous days. These variations in food intake capacity probably reflect the building and breakdown of gut tissues and/or gut enzyme systems and might be insensible and not evolutionary adaptive. Significant energetic costs, however, are probably associated with the maintenance of gut tissues. It is therefore feasible that changes in digestive capacity are regulated and are directed at energy economization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Garden warblers (Sylvia borin) were subjected to starvation trials during their autumnal migratory phase in order to simulate a period of non-stop migration. Before, during and after this treatment the energy expenditure, activity, food intake and body mass of the subjects were monitored. Assimilation efficiency was constant throughout the experiments. The catabolized (during starvation) and deposited body tissue (during recovery) consisted of 73% fat. Basal metabolic rate was decreased during the starvation period and tended to a gradual increase during the recovery period. The reduced basal metabolic rate can possibly be attributed to a reduced size/function of the digestive system, which is consistent with the sub-maximal food intake immediately after resuming the supply of food to the experimental birds. The observed reductions in basal metabolic rate during starvation and activity during recovery can be viewed as adaptations contributing to a higher economization of energy supplies. The experimental birds were unable to eat large quantities of food directly after a period of starvation leading to a comparatively low, or no increase in body mass. Such a slow mass increase is in agreement with observations of migratory birds on arrival at stop-over sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: (i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. METHOD: Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. RESULTS: Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. CONCLUSION: There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – Construction contractors and facility managers are being challenged to minimize the carbon footprint. Life cycle carbon‐equivalent (CO2‐e) accounting, whereby the potential emissions of greenhouse gases due to energy expenditure during construction and subsequent occupation of built infrastructure, generally ceases at the end of the service life. However, following demolition, recycling of demolition waste that becomes incorporated into 2nd generation construction is seldom considered within the management of the carbon footprint. This paper aims to focus on built concrete infrastructure, particularly the ability of recycled concrete to chemically react with airborne CO2, thereby significantly influencing CO2‐e estimates.

Design/methodology/approach – CO2‐e estimates were made in accordance with the methodology outlined in the Australian National Greenhouse Accounts (NGA) Factors and were based on the energy expended for each life cycle activity from audited records. Offsets to the CO2‐e estimates were based on the documented ability of concrete to chemically react with airborne carbon dioxide (“carbonation”) and predictions of CO2 uptake by concrete and recycled concrete was made using existing predictive diffusion models. The author's study focused on a built concrete bridge which was demolished and recycled at the end of the service life, and the recycled concrete was utilized towards 2nd generation construction. The sensitivity of CO2‐e and carbonation estimates were tested on several different types of source demolition waste as well as subsequent construction applications using recycled concrete (RCA). Whole‐of‐life CO2‐e estimates, including carbonation of RCA over the 1st and 2nd generations, were estimated and contrasted with conventional carbon footprints that end at the conclusion of the 1st generation.

Findings – Following demolition, CO2 capture by RCA is significant due to the more permeable nature of the crushed RCA compared with the original built infrastructure. RCA also has considerably greater exposed surface area, relative to volume, than a built concrete structure, and therefore more highly exposed surface to react with CO2: it therefore carbonates more comprehensively. CO2‐e estimates can be offset by as much as 55‐65 per cent when including the contribution of carbonation of RCA built within 2nd generation infrastructure. Further offsets are achievable using blended fly ash or slag cement binders; however, this study has focused on concrete composed of 100 per cent OPC binders and the effects of RCA.

Originality/value – Construction project estimates of life cycle CO2‐e emissions should include 2nd generation applications that follow the demolition of the 1st generation infrastructure. Life cycle estimates generally end at the time of demolition. However, by incorporating the recycled concrete demolition waste into the construction of 2nd generation infrastructure, the estimated CO2‐e is significantly offset during the 2nd generation life cycle by chemical uptake of CO2 (carbonation). This paper provides an approach towards inclusion of 2nd generation construction applications into whole‐of‐life estimates of CO2‐e.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Invasive species can disrupt the communication systems that native biota use for reproductive interactions. In tropical Australia, invasive cane toads (Rhinella marina) breed in many of the same waterbodies that are used by native frogs, and males of both the invader and the native taxa rely on vocal signals to attract mates. We conducted playback experiments to test the hypothesis that calls of toads may influence the calling behaviour of frogs (Limnodynastes convexiusculus and Litoria rothii). Male L. convexiusculus adjusted their calling rate and the variance in inter-call interval in response to a variety of sounds, including the calls of cane toads as well as those of other native frog species, and other anthropogenic noise, whereas L. rothii did not. Within the stimulus periods of playbacks, male L. convexiusculus called more intensely during long silent gaps than during calling blocks. Thus, males of one frog species reduced their calling rate, possibly to minimise energy expenditure during periods of acoustic interference generated by cane toads. In spite of such modifications, the number of overlapping calls (within stimulus periods) did not differ significantly from that expected by chance. In natural conditions, the calls of cane toads are continuous rather than episodic, leaving fewer gaps of silence that male frogs could exploit. Future work could usefully quantify the magnitude of temporal (e.g. diel and seasonal) and spatial overlap between calling by toads and by frogs and the impact of call-structure shifts on the ability of male frogs to attract receptive females.