663 resultados para Research Article
Resumo:
In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, d-ononitol, and d-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753–764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.
Resumo:
The mobility of elements within plants contributes to a plant species' tolerance of nutrient deficiencies in the soil. The genetic manipulation of within-plant nutrient movement may therefore provide a means to enhance plant growth under conditions of variable soil nutrient availability. In these experiments tobacco (Nicotiana tabacum) was engineered to synthesize sorbitol, and the resultant effect on phloem mobility of boron (B) was determined. In contrast to wild-type tobacco, transgenic tobacco plants containing sorbitol exhibit a marked increase in within-plant B mobility and a resultant increase in plant growth and yield when grown with limited or interrupted soil B supply. Growth of transgenic tobacco could be maintained by reutilization of B present in mature tissues or from B supplied as a foliar application to mature leaves. In contrast, B present in mature leaves of control tobacco lines could not be used to provide the B requirements for new plant growth. 10B-labeling experiments verified that B is phloem mobile in transgenic tobacco but is immobile in control lines. These results demonstrate that the transgenic enhancement of within-plant nutrient mobility is a viable approach to improve plant tolerance of nutrient stress.
Resumo:
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.
Resumo:
The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.
Resumo:
Volemitol (d-glycero-d-manno-heptitol, α-sedoheptitol) is an unusual seven-carbon sugar alcohol that fulfills several important physiological functions in certain species of the genus Primula. Using the horticultural hybrid polyanthus (Primula × polyantha) as our model plant, we found that volemitol is the major nonstructural carbohydrate in leaves of all stages of development, with concentrations of up to 50 mg/g fresh weight in source leaves (about 25% of the dry weight), followed by sedoheptulose (d-altro-2-heptulose, 36 mg/g fresh weight), and sucrose (4 mg/g fresh weight). Volemitol was shown by the ethylenediaminetetraacetate-exudation technique to be a prominent phloem-mobile carbohydrate. It accounted for about 24% (mol/mol) of the phloem sap carbohydrates, surpassed only by sucrose (63%). Preliminary 14CO2 pulse-chase radiolabeling experiments showed that volemitol was a major photosynthetic product, preceded by the structurally related ketose sedoheptulose. Finally, we present evidence for a novel NADPH-dependent ketose reductase, tentatively called sedoheptulose reductase, in volemitol-containing Primula species, and propose it as responsible for the biosynthesis of volemitol in planta. Using enzyme extracts from polyanthus leaves, we determined that sedoheptulose reductase has a pH optimum between 7.0 and 8.0, a very high substrate specificity, and displays saturable concentration dependence for both sedoheptulose (apparent Km = 21 mm) and NADPH (apparent Km = 0.4 mm). Our results suggest that volemitol is important in certain Primula species as a photosynthetic product, phloem translocate, and storage carbohydrate.
Resumo:
The extent of in vitro formation of the borate-dimeric-rhamnogalacturonan II (RG-II) complex was stimulated by Ca2+. The complex formed in the presence of Ca2+ was more stable than that without Ca2+. A naturally occurring boron (B)-RG-II complex isolated from radish (Raphanus sativus L. cv Aokubi-daikon) root contained equimolar amounts of Ca2+ and B. Removal of the Ca2+ by trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid induced cleavage of the complex into monomeric RG-II. These data suggest that Ca2+ is a normal component of the B-RG-II complex. Washing the crude cell walls of radish roots with a 1.5% (w/v) sodium dodecyl sulfate solution, pH 6.5, released 98% of the tissue Ca2+ but only 13% of the B and 22% of the pectic polysaccharides. The remaining Ca2+ was associated with RG-II. Extraction of the sodium dodecyl sulfate-washed cell walls with 50 mm trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid, pH 6.5, removed the remaining Ca2+, 78% of B, and 49% of pectic polysaccharides. These results suggest that not only Ca2+ but also borate and Ca2+ cross-linking in the RG-II region retain so-called chelator-soluble pectic polysaccharides in cell walls.
Resumo:
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.
Resumo:
Deepwater rice (Oryza sativa) is adapted to survive conditions of severe flooding over extended periods of time. During such periods adventitious roots develop to provide water, nutrients, and anchorage. In the present study the growth of adventitious roots was induced by treatment with ethylene but not auxin, cytokinin, or gibberellin. Root elongation was enhanced between 8 and 10 h after submergence. The population of cells in the S phase and expression of the S-phase-specific histone H3 gene increased within 4 to 6 h. Within 6 to 8 h the G2-phase population increased. Cell-cycle activation was accompanied by sequential induction of a cdc2-activating kinase homolog, R2, of two cdc2 genes, cdc2Os-1 and cdc2Os-2, and of three cyclin genes, cycA1;3, cycB2;1, and cycB2;2, but only induction of the R2 gene expression preceded the induction of the S phase, possibly contributing to cell-cycle regulation in the G1 phase. Both cdc2 genes were expressed at slightly higher levels during DNA replication. Transcripts of the A-type cyclin accumulated during the S and G2 phases, and transcripts of the B-type cyclins accumulated during the G2 phase. Cyclin expression was induced at all nodes with a similar time course, suggesting that ethylene acts systemically and that root primordia respond to ethylene at an early developmental stage.
Resumo:
Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the mutant sitiens were reduced to 8% of the wild type, in notabilis they were reduced to 47%, and in flacca they were reduced to 21%. In wild-type and notabilis tomato plants the induction of Pin2 gene expression could be elicited by heat treatment, current application, or mechanical wounding. In flacca and sitiens only heat stimulation induced Pin2 gene expression. JA levels in flacca and sitiens plants also accumulated strongly upon heat stimulation but not upon mechanical wounding or current application. Characteristic electrical signals evolved in the wild type and in the notabilis and flacca mutants consisting of a fast action potential and a slow variation potential. However, in sitiens only heat evoked electrical signals; mechanical wounding and current application did not change the membrane potential. In addition, exogenous application of ABA to wild-type tomato plants induced transient changes in membrane potentials, indicating the involvement of ABA in the generation of electrical signals. Our data strongly suggest the presence of a minimum threshold value of ABA within the plant that is essential for the early events in electrical signaling and mediation of Pin2 gene expression upon wounding. In contrast, heat-induced Pin2 gene expression and membrane potential changes were not dependent on the ABA level but, rather, on the accumulation of JA.
Resumo:
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II.
Resumo:
Myosin isolated from the pollen tubes of lily (Lilium longiflorum) is composed of a 170-kD heavy chain (E. Yokota and T. Shimmen [1994] Protoplasma 177: 153–162). Both the motile activity in vitro and the F-actin-stimulated ATPase activity of this myosin were inhibited by Ca2+ at concentrations higher than 10−6 m. In the Ca2+ range between 10−6 and 10−5 m, inhibition of the motile activity was reversible. In contrast, inhibition by more than 10−5 m Ca2+ was not reversible upon Ca2+ removal. An 18-kD polypeptide that showed the same mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that of spinach calmodulin (CaM) was present in this myosin fraction. This polypeptide showed a mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a Ca2+-dependent manner. Furthermore, this polypeptide was recognized by antiserum against spinach CaM. By immunoprecipitation using antiserum against the 170-kD heavy chain, the 18-kD polypeptide was coprecipitated with the 170-kD heavy chain, provided that the Ca2+ concentration was low, indicating that this 18-kD polypeptide is bound to the 170-kD myosin heavy chain. However, the 18-kD polypeptide was dissociated from the 170-kD heavy chain at high Ca2+ concentrations, which irreversibly inhibited the motile activity of this myosin. From these results, it is suggested that the 18-kD polypeptide, which is likely to be CaM, is associated with the 170-kD heavy chain as a light chain. It is also suggested that this polypeptide is involved in the regulation of this myosin by Ca2+. This is the first biochemical basis, to our knowledge, for Ca2+ regulation of cytoplasmic streaming in higher plants.
Resumo:
Mt4 is a cDNA representing a phosphate-starvation-inducible gene from Medicago truncatula that is down-regulated in roots in response to inorganic phosphate (Pi) fertilization and colonization by arbuscular mycorrhizal fungi. Split-root experiments revealed that the expression of the Mt4 gene in M. truncatula roots is down-regulated systemically by both Pi fertilization and colonization by arbuscular mycorrhizal fungi. A comparison of Pi levels in these tissues suggested that this systemic down-regulation is not caused by Pi accumulation. Using a 30-bp region of the Mt4 gene as a probe, Pi-starvation-inducible Mt4-like genes were detected in Arabidopsis and soybean (Glycine max L.), but not in corn (Zea mays L.). Analysis of the expression of the Mt4-like Arabidopsis gene, At4, in wild-type Arabidopsis and pho1, a mutant unable to load Pi into the xylem, suggests that Pi must first be translocated to the shoot for down-regulation to occur. The data from the pho1 and split-root studies are consistent with the presence of a translocatable shoot factor responsible for mediating the systemic down-regulation of Mt4-like genes in roots.
Resumo:
Treatment of pea (Pisum sativum L.) hypocotyl segments with indole-3-butyric acid, which promotes segment elongation, increased the solubilization of both xyloglucan and cello-oligosaccharides in the apoplast of auxin-treated pea stems. The cello-oligosaccharides were isolated from the apoplastic solution with a charcoal/Celite column and were identified as cellobiose, cellotriose, and cellotetraose after subsequent thin-layer chromatography and paper electrophoresis. Cello-oligosaccharides in the apoplastic fraction were monitored using cellobiose dehydrogenase. Both xyloglucan and cello-oligosaccharides appeared to be formed concurrently within 30 min after treatment with the auxin, and the cello-oligosaccharides increased with stem elongation even after 2 h. The total activity of cellulase did not increase for up to 4 h.
Resumo:
This study identified and purified specific isoamylase- and pullulanase-type starch-debranching enzymes (DBEs) present in developing maize (Zea mays L.) endosperm. The cDNA clone Zpu1 was isolated based on its homology with a rice (Oryza sativa L.) cDNA coding for a pullulanase-type DBE. Comparison of the protein product, ZPU1, with 18 other DBEs identified motifs common to both isoamylase- and pullulanase-type enzymes, as well as class-specific sequence blocks. Hybridization of Zpu1 to genomic DNA defined a single-copy gene, zpu1, located on chromosome 2. Zpu1 mRNA was abundant in endosperm throughout starch biosynthesis, but was not detected in the leaf or the root. Anti-ZPU1 antiserum specifically recognized the approximately 100-kD ZPU1 protein in developing endosperm, but not in leaves. Pullulanase- and isoamylase-type DBEs were purified from extracts of developing maize kernels. The pullulanase-type activity was identified as ZPU1 and the isoamylase-type activity as SU1. Mutations of the sugary1 (su1) gene are known to cause deficiencies of SU1 isoamylase and a pullulanase-type DBE. ZPU1 activity, protein level, and electrophoretic mobility were altered in su1-mutant kernels, indicating that it is the affected pullulanase-type DBE. The Zpu1 transcript levels were equivalent in nonmutant and su1-mutant kernels, suggesting that coordinated regulation of ZPU1 and SU1 occurs posttranscriptionally.
Resumo:
Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.