980 resultados para Remote sensing techniques
Resumo:
Com características morfológicas e edafo-climáticas extremamente diversificadas, a ilha de Santo Antão em Cabo Verde apresenta uma reconhecida vulnerabilidade ambiental a par de uma elevada carência de estudos científicos que incidam sobre essa realidade e sirvam de base à uma compreensão integrada dos fenómenos. A cartografia digital e as tecnologias de informação geográfica vêm proporcionando um avanço tecnológico na colecção, armazenamento e processamento de dados espaciais. Várias ferramentas actualmente disponíveis permitem modelar uma multiplicidade de factores, localizar e quantificar os fenómenos bem como e definir os níveis de contribuição de diferentes factores no resultado final. No presente estudo, desenvolvido no âmbito do curso de pós-graduação e mestrado em sistemas de Informação geográfica realizado pela Universidade de Trás-os-Montes e Alto Douro, pretende-se contribuir para a minimização do deficit de informação relativa às características biofísicas da citada ilha, recorrendo-se à aplicação de tecnologias de informação geográfica e detecção remota, associadas à análise estatística multivariada. Nesse âmbito, foram produzidas e analisadas cartas temáticas e desenvolvido um modelo de análise integrada de dados. Com efeito, a multiplicidade de variáveis espaciais produzidas, de entre elas 29 variáveis com variação contínua passíveis de influenciar as características biofísicas da região e, possíveis ocorrências de efeitos mútuos antagónicos ou sinergéticos, condicionam uma relativa complexidade à interpretação a partir dos dados originais. Visando contornar este problema, recorre-se a uma rede de amostragem sistemática, totalizando 921 pontos ou repetições, para extrair os dados correspondentes às 29 variáveis nos pontos de amostragem e, subsequente desenvolvimento de técnicas de análise estatística multivariada, nomeadamente a análise em componentes principais. A aplicação destas técnicas permitiu simplificar e interpretar as variáreis originais, normalizando-as e resumindo a informação contida na diversidade de variáveis originais, correlacionadas entre si, num conjunto de variáveis ortogonais (não correlacionadas), e com níveis de importância decrescente, as componentes principais. Fixou-se como meta a concentração de 75% da variância dos dados originais explicadas pelas primeiras 3 componentes principais e, desenvolveu-se um processo interactivo em diferentes etapas, eliminando sucessivamente as variáveis menos representativas. Na última etapa do processo as 3 primeiras CP resultaram em 74,54% da variância dos dados originais explicadas mas, que vieram a demonstrar na fase posterior, serem insuficientes para retratar a realidade. Optou-se pela inclusão da 4ª CP (CP4), com a qual 84% da referida variância era explicada e, representando oito variáveis biofísicas: a altitude, a densidade hidrográfica, a densidade de fracturação geológica, a precipitação, o índice de vegetação, a temperatura, os recursos hídricos e a distância à rede hidrográfica. A subsequente interpolação da 1ª componente principal (CP1) e, das principais variáveis associadas as componentes CP2, CP3 e CP4 como variáveis auxiliares, recorrendo a técnicas geoestatística em ambiente ArcGIS permitiu a obtenção de uma carta representando 84% da variação das características biofísicas no território. A análise em clusters validada pelo teste “t de Student” permitiu reclassificar o território em 6 unidades biofísicas homogéneas. Conclui-se que, as tecnologias de informação geográfica actualmente disponíveis a par de facilitar análises interactivas e flexíveis, possibilitando que se faça variar temas e critérios, integrar novas informações e introduzir melhorias em modelos construídos com bases em informações disponíveis num determinado contexto, associadas a técnicas de análise estatística multivariada, possibilitam, com base em critérios científicos, desenvolver a análise integrada de múltiplas variáveis biofísicas cuja correlação entre si, torna complexa a compreensão integrada dos fenómenos.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.
Resumo:
Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero-lag between pairs of signals collected by an array of antennas. The angular resolution is then determined by the maximum antenna spacing normalized to the wavelength (baseline). The next step in improving the angular resolution is the Doppler-Radiometer, somehow related to the super-synthesis radiometers and the Radiometer-SAR. This paper presents the concept of a three-antenna Doppler-Radiometer for 2D imaging. The performance of this instrument is evaluated in terms of angular/spatial resolution and radiometric sensitivity, and an L-band illustrative example is presented.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos
Resumo:
In 1903, more than 30 million m3 of rock fell from the east slopes of Turtle Mountain in Alberta, Canada, causing a rock avalanche that killed about 70 people in the town of Frank. The Alberta Government, in response to continuing instabilities at the crest of the mountain, established a sophisticated field laboratory where state-of-the-art monitoring techniques have been installed and tested as part of an early-warning system. In this chapter, we provide an overview of the causes, trigger, and extreme mobility of the landslide. We then present new data relevant to the characterization and detection of the present-day instabilities on Turtle Mountain. Fourteen potential instabilities have been identified through field mapping and remote sensing. Lastly, we provide a detailed review of the different in-situ and remote monitoring systems that have been installed on the mountain. The implications of the new data for the future stability of Turtle Mountain and related landslide runout, and for monitoring strategies and risk management, are discussed.
Resumo:
The management and conservation of coastal waters in the Baltic is challenged by a number of complex environmental problems, including eutrophication and habitat degradation. Demands for a more holistic, integrated and adaptive framework of ecosystem-based management emphasize the importance of appropriate information on the status and changes of the aquatic ecosystems. The thesis focuses on the spatiotemporal aspects of environmental monitoring in the extensive and geomorphologically complex coastal region of SW Finland, where the acquisition of spatially and temporally representative monitoring data is inherently challenging. Furthermore, the region is subject to multiple human interests and uses. A holistic geographical approach is emphasized, as it is ultimately the physical conditions that set the frame for any human activity. Characteristics of the coastal environment were examined using water quality data from the database of the Finnish environmental administration and Landsat TM/ETM+ images. A basic feature of the complex aquatic environment in the Archipelago Sea is its high spatial and temporal variability; this foregrounds the importance of geographical information as a basis of environmental assessments. While evidence of a consistent water turbidity pattern was observed, the coastal hydrodynamic realm is also characterized by high spatial and temporal variability. It is therefore also crucial to consider the spatial and temporal representativeness of field monitoring data. Remote sensing may facilitate evaluation of hydrodynamic conditions in the coastal region and the spatial extrapolation of in situ data despite their restrictions. Additionally, remotely sensed images can be used in the mapping of many of those coastal habitats that need to be considered in environmental management. With regard to surface water monitoring, only a small fraction of the currently available data stored in the Hertta-PIVET register can be used effectively in scientific studies and environmental assessments. Long-term consistent data collection from established sampling stations should be emphasized but research-type seasonal assessments producing abundant data should also be encouraged. Thus a more comprehensive coordination of field work efforts is called for. The integration of remote sensing and various field measurement techniques would be especially useful in the complex coastal waters. The integration and development of monitoring system in Finnish coastal areas also requires further scientific assesement of monitoring practices. A holistic approach to the gathering and management of environmental monitoring data could be a cost-effective way of serving a multitude of information needs, and would fit the holistic, ecosystem-based management regimes that are currently being strongly promoted in Europe.
Resumo:
This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.
Resumo:
Peer-reviewed
Resumo:
Kirjallisuusarvostelu