648 resultados para Relational fuzzy clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudi, disseny i implementació de diferents tècniques d’agrupament de fibres (clustering) per tal d’integrar a la plataforma DTIWeb diferents algorismes de clustering i tècniques de visualització de clústers de fibres de forma que faciliti la interpretació de dades de DTI als especialistes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finales de 2009 se emprendió un nuevo modelo de segmentación de mercados por conglomeraciones o clústers, con el cual se busca atender las necesidades de los clientes, advirtiendo el ciclo de vida en el cual se encuentran, realizando estrategias que mejoren la rentabilidad del negocio, por medio de indicadores de gestión KPI. Por medio de análisis tecnológico se desarrolló el proceso de inteligencia de la segmentación, por medio del cual se obtuvo el resultado de clústers, que poseían características similares entre sí, pero que diferían de los otros, en variables de comportamiento. Esto se refleja en el desarrollo de campañas estratégicas dirigidas que permitan crear una estrecha relación de fidelidad con el cliente, para aumentar la rentabilidad, en principio, y fortalecer la relación a largo plazo, respondiendo a la razón de ser del negocio

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some examples from the book. Connolly, T. M. and C. E. Begg (2005). Database systems : a practical approach to design, implementation, and management. Harlow, Essex, England ; New York, Addison-Wesley.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para el administrador el proceso de la toma de decisiones es uno de sus mayores retos y responsabilidades, ya que en su desarrollo se debe definir el camino más acertado en un sin número de alternativas, teniendo en cuenta los obstáculos sociales, políticos y económicos del entorno empresarial. Para llegar a la decisión adecuada no hay que perder de vista los objetivos y metas propuestas, además de tener presente el proceso lógico, detectando, analizando y demostrando el porqué de esa elección. Consecuentemente el análisis que propone esta investigación aportara conocimientos sobre los tipos de lógica utilizados en la toma de decisiones estratégicas al administrador para satisfacer las demandas asociadas con el mercadeo para que de esta manera se pueda generar y ampliar eficientemente las competencia idóneas del administrador en la inserción internacional de un mercado laboral cada vez mayor (Valero, 2011). A lo largo de la investigación se pretende desarrollar un estudio teórico para explicar la relación entre la lógica y la toma de decisiones estratégicas de marketing y como estos conceptos se combinan para llegar a un resultado final. Esto se llevara a cabo por medio de un análisis de planes de marketing, iniciando por conceptos básicos como marketing, lógica, decisiones estratégicas, dirección de marketing seguido de los principios lógicos y contradicciones que se pueden llegar a generar entre la fundamentación teórica