938 resultados para Reduction process
Resumo:
Graphene with heteroatom doping has found increasing applications in a broad range of catalytic reactions. However, the doping effects accounting for the enhanced catalytic activity still remain elusive. In this work, taking the triiodide electroreduction reaction as an example, we study systematically the intrinsic activity of graphene and explore the origin of doping-induced activity variation using first-principles calculations, in which two typical N and S dopants are tested. The most common graphene structures, basal plane, armchair edge, and zigzag edge, are considered, and it is found that the former two structures show a weak adsorption ability for the iodine atom (the key intermediate in the triiodide electroreduction reaction), corresponding to a low catalytic activity. Doping either N or S can strengthen the adsorption and thus increase the activity, and the codoping of N and S (NS-G) exhibits a synergistic effect. A detailed investigation into the whole process of the triiodide electroreduction reaction at the CH3CN/NS-G interface is also carried out to verify these activity trends. It is found that the zigzag edges which contain spin electrons show a relatively stronger adsorption strength compared with the basal plane and armchair edge, and initial doping would result in the spin disappearance that evidently weakens the adsorption; with the disappearance of spin, however, further doping can increase the adsorption again, suggesting that the spin electrons may play a preliminary role in affecting the intrinsic activity of graphene. We also analyzed extensively the origin of doping-induced adsorption enhancement of graphene in the absence of spin; it can be rationalized from the electronic and geometric factors. Specifically, N doping can result in a more delocalized “electron-donating area” to enhance I adsorption, while S doping provides a localized structural distortion, which activates the nearest sp2-C into coordinatively unsaturated sp3-C. These results explain well the improved activity of the doping and the synergistic effect of the codoping. The understandings are generalized to provide insight into the enhanced activity of the oxygen reduction reaction on heteroatom doped graphene. This work may be of importance toward the design of high-activity graphene based material.
Resumo:
Metal exchanged CHA-type (SAPO-34 and SSZ-13) zeolites are promising catalysts for selective catalytic reduction (SCR) of NOx by NH3. However, the understanding of the process at the molecular level is still limited, which hinders the identification of its mechanism and the design of more efficient zeolite catalysts. In this work, modelling the reaction over Cu-SAPO-34, a periodic density functional theory (DFT) study of NH3-SCR was performed using hybrid functional with the consideration of van der Waals (vdW) interactions. A mechanism with a low N–N coupling barrier is proposed to account for the activation of NO. The redox cycle of Cu2+ and Cu+, which is crucial for the SCR process, is identified with detailed analyses. Besides, the decomposition of NH2NO is shown to readily occur on the Brønsted acid site by a hydrogen push-pull mechanism, confirming the collective efforts of Brønsted acid and Lewis acid (Cu2+) sites. The special electronic and structural properties of Cu-SAPO-34 are demonstrated to play an essential role the reaction, which may have a general implication on the understanding of zeolite catalysis.
Resumo:
Gluten sensitive consumers and people suffering from coeliac disease account for up to 6% of the general population (Catassi et al., 2013). These consumers must avoid foods which contain gluten and related proteins found in wheat, rye or barley. Beer is produced from barley malt and therefore contains hordeins, (gluten like proteins). Beers labelled as gluten-free must contain below 10 mg/kg hordeins (10 mg/kg hordeins = 20 mg/kg gluten under current regulations) to be considered safe for gluten sensitive consumers. Currently there are a limited number of methods available for reducing beer hordeins, the studies outlined in this thesis provide a range of tools for the beverage industry to reduce the hordein content of beer It is well known, that during malting and brewing hordeins are reduced, but they still remain in beer at levels above 10 mg/kg. During malting, hordeins are broken down to form new proteins in the growing plant. Model malting and brewing systems were developed and used to test, how the modification of the malting process could be used to reduce beer hordeins. It was shown, that by using a controlled malting and brewing regime, a range of barley cultivars produced beer with significant differences in levels of hordeins. Beer hordeins ranged from 10 mg/kg to 60 mg/kg. Another study revealed that when malting was prolonged, to maximise breakdown of proteins, beer hordeins can be reduced by up to 44%. The natural breakdown of hordein during malting enhanced in a further study, when a protease was added to support the hordein degradation during steeping and germination. The enzyme addition resulted in a 46% reduction in beer hordeins 2 when compared to the control. All of the malt treatments had little or no impact on malt quality. The hordein levels can also be reduced during the beer stabilisation process. Levels of beer hordein were tested after stabilisation using two different concentrations of silica gel and tannic acid. Silica gel was very effective in reducing beer hordeins, 90% of beer hordeins were removed compared to the control beer. Beer hordeins could be reduced to below 10 mg/kg and the beer qualities such as foam, colour and flavour were not affected. Tannic acid also reduced beer hordein by up to 90%, but it reduced foam stability and affected beer flavours. A further study described treatment of beer with microbial transglutaminase (mTG), to create bonds between hordein proteins, which increased particle size and allowed removal during filtration. The addition of the mTG led to a reduction of the beer hordein by up to 96% in beer, and the impact on the resulting beer quality was minimal. These studies provide the industry with a toolbox of methods leading to the reduction of hordein in the final beer without negatively affecting beer quality.
Resumo:
Aluminium cells involve a range of complex physical processes which act simultaneously to provide a narrow satisfactory operating range. These processes involve electromagnetic fields, coupled with heat transfer and phase change, two phase fluid flow with a range of complexities plus the development of stress in the cell structure. All of these phenomena are coupled in some significant sense and so to provide a comprehensive model of these processes involves their representation simultaneously. Conventionally, aspects of the process have been modeled separately using uncoupled estimates of the effects of the other phenomena; this has enabled the use of standard commercial CFD and FEA tools. In this paper we will describe an approach to the modeling of aluminium cells which describes all the physics simultaneously. This approach uses a finite volume approximation for each of the phenomena and facilitates their interactions directly in the modeling-the complex geometries involved are addressed by using unstructured meshes. The very challenging issues to be overcome in this venture will be outlined and some preliminary results will be shown.
Resumo:
The industrial production of aluminium is an electrolysis process where two superposed horizontal liquid layers are subjected to a mainly vertical electric current supplied by carbon electrodes. The lower layer consists of molten aluminium and lies on the cathode. The upper layer is the electrolyte and is covered by the anode. The interface between the two layers is often perturbed, leading to oscillations, or waves, similar to the waves on the surface of seas or lakes. The presence of electric currents and the resulting magnetic field are responsible for electromagnetic (Lorentz) forces within the fluid, which can amplify these oscillations and have an adverse influence on the process. The electrolytic bath vertical to horizontal aspect ratio is such, that it is advantageous to use the shallow water equations to model the interface motion. These are the depth-averaging the Navier-Stokes equations so that nonlinear and dispersion terms may be taken into account. Although these terms are essential to the prediction of wave dynamics, they are neglected in most of the literature on interface instabilities in aluminium reduction cells where only the linear theory is usually considered. The unknown variables are the two horizontal components of the fluid velocity, the height of the interface and the electric potential. In this application, a finite volume resolution of the double-layer shallow water equations including the electromagnetic sources has been developed, for incorporation into a generic three-dimensional computational fluid dynamics code that also deals with heat transfer within the cell.
Resumo:
Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.
Resumo:
The machining of hardened steel is becoming increasingly important in manufacturing processes. Machined parts made with hardened steel are often subjected to high service demands, which require great resistance and quality. The machining of this material submits the tools to high mechanical and thermal loads, which increases the tool wear and affects the surface integrity of the part. In that context, this work presents a study of drilling of AISI P20 steel with carbide tools, analyzing the effects on the process caused by the reduction of cutting fluid supply and its relation with the tool wear and the surface integrity of the piece. The major problem observed in the tests was a difficulty for chips to flow through the drill flute, compromising their expulsion from the hole. After a careful analysis, a different machining strategy was adopted to solve the problem
Resumo:
The ability to predict the properties of magnetic materials in a device is essential to ensuring the correct operation and optimization of the design as well as the device behavior over a wide range of input frequencies. Typically, development and simulation of wide-bandwidth models requires detailed, physics-based simulations that utilize significant computational resources. Balancing the trade-offs between model computational overhead and accuracy can be cumbersome, especially when the nonlinear effects of saturation and hysteresis are included in the model. This study focuses on the development of a system for analyzing magnetic devices in cases where model accuracy and computational intensity must be carefully and easily balanced by the engineer. A method for adjusting model complexity and corresponding level of detail while incorporating the nonlinear effects of hysteresis is presented that builds upon recent work in loss analysis and magnetic equivalent circuit (MEC) modeling. The approach utilizes MEC models in conjunction with linearization and model-order reduction techniques to process magnetic devices based on geometry and core type. The validity of steady-state permeability approximations is also discussed.
Resumo:
According to many scientists third industrial revolution has already began and this primarily means the transition to renewable energy sources. Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the roads. Massive consumption of fossil fuels leads to environmental pollution, therefore, biofuels are offered as an alternative. For example, the application of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. One of the most important technologies, which has been already explored at the commercial level, is the production of a liquid biofuel applicable in compression-ignition engines (or diesel engines), from biomass rich in fats and oils. This biofuel is generically referred as biodiesel, and consists essentially of a mixture of FAME's (fatty acid methyl esters). This current work describes modern approaches of biodiesel production from vegetable oil and subsequent analysis of produced biodiesel main characteristics such as density, acidity, iodine value and FAME content.
Resumo:
Property taxes serve as a vital revenue source for local governments. The revenues derived from the property tax function as the primary funding source for a variety of critical local public service systems. Property tax appeal systems serve as quasi-administrative-judicial mechanisms intended to assure the public that property tax assessments are correct, fair, and equitable. Despite these important functions, there is a paucity of empirical research related to property tax appeal systems. This study contributes to property tax literature by identifying who participates in the property tax appeal process and examining their motivations for participation. In addition, the study sought to determine whether patterns of use and success in appeal systems affected the distribution of the tax burden. Data were collected by means of a survey distributed to single-family property owners from two Florida counties. In addition, state and county documents were analyzed to determine appeal patterns and examine the impact on assessment uniformity, over a three-year period. The survey data provided contextual evidence that single-family property owners are not as troubled by property taxes as they are by the conduct of local government officials. The analyses of the decision to appeal indicated that more expensive properties and properties excluded from initial uniformity analyses were more likely to be appealed, while properties with homestead exemptions were less likely to be appealed. The value change analyses indicated that appeals are clustered in certain geographical areas; however, these areas do not always experience a greater percentage of the value changes. Interestingly, professional representation did not increase the probability of obtaining a reduction in value. Other relationships between the variables were discovered, but often with weak predictive ability. Findings from the assessment uniformity analyses were also interesting. The results indicated that the appeals mechanisms in both counties improved assessment uniformity. On average, appealed properties exhibited greater horizontal and vertical inequities, as compared to non-appealed properties, prior to the appeals process. After, the appeal process was completed; the indicators of horizontal and vertical equity were largely improved. However, there were some indications of regressivity in the final year of the study.
Resumo:
Value-Stream mapping (VSM) is a helpful tool to identify waste and improvement areas. It has emerged as a preferred way to support and implement the lean approach. While lean principles are well-established and have broad applicability in manufacturing, their extension to information technology is still limited. Based on a case study approach, this paper presents the implementation of VSM in an IT firm as a lean IT improvement initiative. It involves mapping the current activities of the firm and identifying opportunities for improvement. After several interviews with employees who are currently involved in the process, current state map is prepared to describe the existing problem areas. Future state map is prepared to show the proposed improvement action plans. The achievements of VSM implementation are reduction in lead time, cycle time and resources. Our finding indicates that, with the new process change, total lead time can be reduced from 20 days to 3 days – 92% reduction in overall lead time for database provisioning process.
Resumo:
Microwave reduction testing using activated charcoal as a reducing agent was performed on a sample of Black Thor chromite ore from the Ring of Fire deposit in Northern Ontario. First, a thermodynamic model was constructed for the system. Activity coefficients for several species were found in the literature. The model predicted chromium grades of 61.60% and recoveries of 93.43% for a 15% carbon addition. Next, reduction testing on the chromite ore was performed. Tests were performed at increasing power levels and reduction times. Testing atmospheres used were air, argon, and vacuum. The reduced product had maximum grades of 72.89% and recoveries of 80.37%. These maximum values were obtained in the same test where an argon atmosphere was used, with a carbon addition of 15%, optimal power level of 1200 W (actual 1171 W), and a time of 400 seconds. During this test, 17.53% of the initial mass was lost as gas, a carbon grade of 1.95% was found for the sintered core product. Additional work is recommended to try and purify the sintered core product as well as reduce more of the initial sample. Changing reagent schemes or a two step reduction / separation process could be implemented.
Resumo:
Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.