989 resultados para Red lead.
Resumo:
Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
The highly complex structure-property interrelationship in the lead-free piezoelectric (x) Na1/2Bi1/2TiO3 - (1 - x) BaTiO3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x = 0.80, i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x < 0.8) to a long-period modulated tetragonal phase (for x > 0.80). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes Bellaiche and Iniguez, Phys. Rev. B 88, 014104 ( 2013); Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013)].
Resumo:
Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.
Resumo:
Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of similar to 200 F and similar to 300 F, energy densities of similar to 1.9 Wh kg(-1) and similar to 2.5 Wh kg(-1) and power densities of similar to 2 kW kg(-1) and similar to 0.8 kW kg(-1), respectively, having faradaic-efficiency values of similar to 90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about similar to 4 US$/Wh as compared to similar to 20 US$/Wh for commercially available ultracapacitors.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.
Resumo:
Here, we report the hydrothermal synthesis of boron-doped CNPs (B-CNPs) with different size/atomic percentage of doping and size-independent color tunability from red to blue. The variation of size/atomic percentage of B is achieved by simply varying the reaction time, while the color tunability is obtained by diluting the solution. With dilution, the luminescence spectra are not only blue-shifted, the intensity increases as well. The huge blue-shift in the emission energy (similar to 1 eV) is believed to be due to the increase in the interparticle distance. The quantum yield with optimum dilution is found to increase with boron doping though it is very low as compared to CNPs and nitrogen-doped CNPs. Finally, we show that B-CNPs with a quantum yield of 0.5% can be used for bioimaging applications. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in Na1/2Bi1/2TiO3-based lead-free piezoceramics. (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x = 0.03 in this system Ma et al., Adv. Funct. Mater. 23, 5261 (2013)]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x < 0.06), temperature, and electric field. Our results show that this boundary separates an R3c + Cc-like structural state for x < 0.03 from an R3c+ cubiclike structural state for 0.03 <= x <= 0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P4bm phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x = 0.06, known for its highest piezoelectric response.
Resumo:
ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.
Resumo:
The complex nature of the structural disorder in the lead-free ferroelectric Na1/2Bi1/2TiO3 has a profound impact on the perceived global structure and polar properties. In this paper, we have investigated the effect of electric field and temperature on the local structure around theBi and Ti atoms using extended x-ray absorption fine structure. Detailed analysis revealed that poling brings about a noticeable change in the bond distances associated with the Bi-coordination sphere, whereas the Ti coordination remains unaffected. We also observed discontinuity in the Bi-O bond lengths across the depolarization temperature of the poled specimen. These results establish that the disappearance of the monoclinic-like (Cc) global distortion, along with the drastic suppression of the short-ranged in-phase octahedral tilt after poling B. N. Rao et al., Phys. Rev. B 88, 224103 (2013)] is a result of the readjustment of theA-O bonds by the electric field, so as to be in conformity with the rhombohedral R3c structure.