766 resultados para Recurrent neural network
Resumo:
Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.
Resumo:
The question addressed by this dissertation is how the human brain builds a coherent representation of the body, and how this representation is used to recognize its own body. Recent approaches by neuroimaging and TMS revealed hints for a distinct brain representation of human body, as compared with other stimulus categories. Neuropsychological studies demonstrated that body-parts and self body-parts recognition are separate processes sub-served by two different, even if possibly overlapping, networks within the brain. Bodily self-recognition is one aspect of our ability to distinguish between self and others and the self/other distinction is a crucial aspect of social behaviour. This is the reason why I have conducted a series of experiment on subjects with everyday difficulties in social and emotional behaviour, such as patients with autism spectrum disorders (ASD) and patients with Parkinson’s disease (PD). More specifically, I studied the implicit self body/face recognition (Chapter 6) and the influence of emotional body postures on bodily self-processing in TD children as well as in ASD children (Chapter 7). I found that the bodily self-recognition is present in TD and in ASD children and that emotional body postures modulate self and others’ body processing. Subsequently, I compared implicit and explicit bodily self-recognition in a neuro-degenerative pathology, such as in PD patients, and I found a selective deficit in implicit but not in explicit self-recognition (Chapter 8). This finding suggests that implicit and explicit bodily self-recognition are separate processes subtended by different mechanisms that can be selectively impaired. If the bodily self is crucial for self/other distinction, the space around the body (personal space) represents the space of interaction and communication with others. When, I studied this space in autism, I found that personal space regulation is impaired in ASD children (Chapter 9).
Resumo:
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.
Resumo:
This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.
Resumo:
Long-term potentiation in the neonatal rat rnbarrel cortex in vivo rnLong-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex LTP has been so far only studied in vitro. I combined voltage-sensitive dye imaging with extracellular multi-electrode recordings to study whisker stimulation-induced LTP for both the slope of field potential and the number of multi-unit activity in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the stimulated barrel-related column, smaller in the surrounding septal region and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV / lower layer II/III at P3-P5 and in the cortical plate / upper layer V at P0-P1. This study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo. These activity-dependent modifications during the critical period may play an important role in the development and refinement of the topographic map in the barrel cortex. (An et al., 2012)rnEarly motor activity triggered by gamma and spindle bursts in neonatal rat motor cortexrnSelf-generated neuronal activity generated in subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neuronal activity patterns and functions of neonatal primary motor cortex (M1) in the early movements are still unknown. I combined voltage-sensitive dye imaging with simultaneous extracellular multi-electrode recordings in the neonatal rat S1 and M1 in vivo. At P3-P5, gamma and spindle bursts observed in M1 could trigger early paw movements. Furthermore, the paw movements could be also elicited by the focal electrical stimulation of M1 at layer V. Local inactivation of M1 could significantly attenuate paw movements, suggesting that the neonatal M1 operates in motor mode. In contrast, the neonatal M1 can also operate in sensory mode. Early spontaneous movements and sensory stimulations of paw trigger gamma and spindle bursts in M1. Blockade of peripheral sensory input from the paw completely abolished sensory evoked gamma and spindle bursts. Moreover, both sensory evoked and spontaneously occurring gamma and spindle bursts mediated interactions between S1 and M1. Accordingly, local inactivation of the S1 profoundly reduced paw stimulation-induced and spontaneously occurring gamma and spindle bursts in M1, indicating that S1 plays a critical role in generation of the activity patterns in M1. This study proposes that both self-generated and sensory evoked gamma and spindle bursts in M1 may contribute to the refinement and maturation of corticospinal and sensorimotor networks required for sensorimotor coordination.rn
Resumo:
In this thesis, the main Executive Control theories are exposed. Methods typical of Cognitive and Computational Neuroscience are introduced and the role of behavioural tasks involving conflict resolution in the response elaboration, after the presentation of a stimulus to the subject, are highlighted. In particular, the Eriksen Flanker Task and its variants are discussed. Behavioural data, from scientific literature, are illustrated in terms of response times and error rates. During experimental behavioural tasks, EEG is registered simultaneously. Thanks to this, event related potential, related with the current task, can be studied. Different theories regarding relevant event related potential in this field - such as N2, fERN (feedback Error Related Negativity) and ERN (Error Related Negativity) – are introduced. The aim of this thesis is to understand and simulate processes regarding Executive Control, including performance improvement, error detection mechanisms, post error adjustments and the role of selective attention, with the help of an original neural network model. The network described here has been built with the purpose to simulate behavioural results of a four choice Eriksen Flanker Task. Model results show that the neural network can simulate response times, error rates and event related potentials quite well. Finally, results are compared with behavioural data and discussed in light of the mentioned Executive Control theories. Future perspective for this new model are outlined.
Resumo:
Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.
Resumo:
We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).
Resumo:
Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.
Resumo:
Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.