931 resultados para Real-time PCR
Resumo:
A lo largo de este documento, se va a explicar la implantación del proyecto que he realizado basado en la localización de vehículos en la fábrica de Mercedes Benz España situada en Vitoria-Gasteiz. Durante la realización de este proyecto, se han llevado a cabo diversos estudios con el fin de conseguir la correcta implantación de las tecnologías empleadas. Se han realizado diferentes alternativas de posicionamiento de los componentes y diversas pruebas para comprobar el correcto funcionamiento de la solución. La solución del proyecto se realizará en distintas fases. La primera de ellas tratará sobre el estudio en una determinada zona de la fábrica, más concretamente la denominada “Área Técnica”, en esta zona se encuentran los vehículos que sufren algún retoque una vez están montados, esta zona se utilizará como piloto para una vez finalizado y comprobado su éxito ampliar la solución al resto de zonas. Previamente a mi incorporación se realizó un estudio para la colocación de los elementos necesarios en esta zona y se ha visto las posibilidades y beneficios que aportaría el control de los vehículos dentro de la fábrica. La siguiente fase será implantar la solución en el resto de las áreas que se encuentran dentro de la fábrica de Vitoria-Gasteiz así como la instalación de unos dispositivos que estarán ubicados en las puertas. Estos ayudarán a mejorar la ubicación de los vehículos ya que podremos conocer si los vehículos se encuentran dentro o fuera de la fábrica. Finalmente se ha realizado la integración de la solución en los sistemas actuales que utilizan en la fábrica para la gestión de los vehículos durante su ciclo de vida.
Resumo:
Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.
Resumo:
A scheme for the readout of a hologram recorded in bacteriorhodopsin film with high diffraction efficiency and intensity is suggested and demonstrated. Two weak coherent continuous beams function as the recording beams, and a strong light pulse is used to read the real-time hologram. The width of the readout light pulse is modulated to be short compared with the erase time of the reading beam; the time space between two adjacent pulses is ensured to be longer than the time the beams take to recover the hologram, and high diffraction efficiency and intensity (similar to 11 mW/cm(2)) can be obtained. (C) 1996 Optical Society of America.
Resumo:
Current earthquake early warning systems usually make magnitude and location predictions and send out a warning to the users based on those predictions. We describe an algorithm that assesses the validity of the predictions in real-time. Our algorithm monitors the envelopes of horizontal and vertical acceleration, velocity, and displacement. We compare the observed envelopes with the ones predicted by Cua & Heaton's envelope ground motion prediction equations (Cua 2005). We define a "test function" as the logarithm of the ratio between observed and predicted envelopes at every second in real-time. Once the envelopes deviate beyond an acceptable threshold, we declare a misfit. Kurtosis and skewness of a time evolving test function are used to rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to both probabilistic (Logistic Regression and Bayesian Logistic Regression) and nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately decide if there is an unacceptable level of misfit. This algorithm is designed to work at a wide range of amplitude scales. When tested with synthetic and actual seismic signals from past events, it works for both small and large events.
Resumo:
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.