967 resultados para Reaction diffusion equations
Resumo:
Our survey findings confirm that 11 factors influence information and communication technology (ICT) diffusion for experienced ICT users. We offer a model that consists of 4 groups of categories: management (M); individual (I); technology (T); and environment (E). Our conclusions reinforce the importance of a coherent ICT diffusion strategy and supportive environment. This requires substantial investment in training and collegial learning support mechanisms. This paper provides an overview of the work undertaken and an analysis of its implications for the construction industry and we provide useful insights that a wide range of construction industry professionals and contractors may find useful.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
Rapid advances in educational and information communications technology (ICT)have encouraged some educators to move beyond traditional face to face and distance education correspondence modes toward a rich, technology mediated e-learning environment. Ready access to multimedia at the desktop has provided the opportunity for educators to develop flexible, engaging and interactive learning resources incorporating multimedia and hypermedia. However, despite this opportunity, the adoption and integration of educational technologies by academics across the tertiary sector has typically been slow. This paper presents the findings of a qualitative study that investigated factors influencing the manner in which academics adopt and integrate educational technology and ICT. The research was conducted at a regional Australian university, the University of Southern Queensland (USQ), and focused on the development of e-learning environments. These e-learning environments include a range of multimodal learning objects and multiple representations of content that seek to cater for different learning styles and modal preferences, increase interaction, improve learning outcomes, provide a more inclusive and equitable curriculum and more closely mirror the on campus learning experience. This focus of this paper is primarily on the barriers or inhibitors academics reported in the study, including institutional barriers, individual inhibitors and pedagogical concerns. Strategies for addressing these obstacles are presented and implications and recommendations for educational institutions are discussed.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.
Resumo:
Small element spacing in compact arrays results in strong mutual coupling between the array elements. A decoupling network consisting of reactive cross-coupling elements can alleviate problems associated with the coupling. Closed-form design equations for the decoupling networks of symmetrical arrays with two or three elements are presented.
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.