917 resultados para Random Rooted Labeled Trees


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant community ecologists use the null model approach to infer assembly processes from observed patterns of species co-occurrence. In about a third of published studies, the null hypothesis of random assembly cannot be rejected. When this occurs, plant ecologists interpret that the observed random pattern is not environmentally constrained - but probably generated by stochastic processes. The null model approach (using the C-score and the discrepancy index) was used to test for random assembly under two simulation algorithms. Logistic regression, distance-based redundancy analysis, and constrained ordination were used to test for environmental determinism (species segregation along environmental gradients or turnover and species aggregation). This article introduces an environmentally determined community of alpine hydrophytes that presents itself as randomly assembled. The pathway through which the random pattern arises in this community is suggested to be as follows: Two simultaneous environmental processes, one leading to species aggregation and the other leading to species segregation, concurrently generate the observed pattern, which results to be neither aggregated nor segregated - but random. A simulation study supports this suggestion. Although apparently simple, the null model approach seems to assume that a single ecological factor prevails or that if several factors decisively influence the community, then they all exert their influence in the same direction, generating either aggregation or segregation. As these assumptions are unlikely to hold in most cases and assembly processes cannot be inferred from random patterns, we would like to propose plant ecologists to investigate specifically the ecological processes responsible for observed random patterns, instead of trying to infer processes from patterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18 degrees S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)