918 resultados para Random Regret Minimization
Resumo:
This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).
Resumo:
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
Resumo:
Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.
Resumo:
This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed oil SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based oil the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L-lactide and epsilon-caprolactone (CL), 2,4-toluene diisocyanate, and 1,4-butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their T(g)s are in the range of 28-53 degrees C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape-memory property. When they are deformed and fixed at proper temperatures, their shape-recovery is almost complete for a tensile elongation of 150% or a compression of 2-folds. By changing the content of CL and the hard-to-soft ratio, their T(g)s and their shape-recovery temperature can be adjusted. Therefore, they may find wide applications.
Resumo:
The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.