960 resultados para Raio X
Resumo:
Molecular dynamics simulations have been carried out on all the jacalin-carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin-carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin-carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin-carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009; 77:760-777.
Resumo:
Multipotent stem cells can self-renew and give rise to multiple cell types. One type of mammalian multipotent stem cells are neural stem cells (NSC)s, which can generate neurons, astrocytes and oligodendrocytes. NSCs are likely involved in learning and memory, but their exact role in cognitive function in the developing and adult brain is unclear. We have studied properties of NSCs in fragile X syndrome (FXS), which is the most common form of inherited mental retardation. FXS is caused by the lack of functional fragile X mental retardation protein (FMRP). FMRP is involved in the regulation of postsynaptic protein synthesis in a group I metabotropic glutamate receptor 5 (mGluR5)-dependent manner. In the absence of functional FMRP, the formation of functional synapses is impaired in the forebrain which results in alterations in synaptic plasticity. In our studies, we found that FMRP-deficient NSCs generated more neurons and less glia than control NSCs. The newborn neurons derived from FMRP-deficient NSCs showed an abnormally immature morphology. Furthermore, FMRP-deficient NSCs exhibited aberrant oscillatory Ca2+ responses to glutamate, which were specifically abolished by an antagonist of the mGluR5 receptor. The data suggested alterations in glutamatergic differentiation of FMRP-deficient NSCs and were further supported by an accumulation of cells committed to glutamatergic lineage in the subventricular zone of the embryonic Fmr1-knockout (Fmr1-KO) neocortex. Postnatally, the aberrant cells likely contributed to abnormal formation of the neocortex. The findings suggested a defect in the differentiation of distinct glutamatergic mGluR5 responsive cells in the absence of functional FMRP. Furthermore, we found that in the early postnatal Fmr1-KO mouse brain, the expression of mRNA for regulator of G-protein signalling-4 (RGS4) was decreased which was in line with disturbed G-protein signalling in NSCs lacking FMRP. Brain derived neurotrophic factor (BDNF) promotes neuronal differentiation of NSCs as the absence of FMRP was shown to do. This led us to study the effect of impaired BDNF/TrkB receptor signaling on NSCs by overexpression of TrkB.T1 receptor isoform. We showed that changes in the relative expression levels of the full-length and truncated TrkB isoforms influenced the replication capacity of NSCs. After the differentiation, the overexpression of TrkB.T1 increased neuronal turnover. To summarize, FMRP and TrkB signaling are involved in normal differentiation of NSCs in the developing brain. Since NSCs might have potential for therapeutic interventions in a variety of neurological disorders, our findings may be useful in the design of pharmacological interventions in neurological disorders of learning and memory.
Resumo:
Substitution of Sn4+ ion in CeO2 creates activated oxygen in Ce0.8Sn0.2O2 leading to higher oxygen storage capacity compared to Ce0.8Zr0.2O2. With Pd ion substitution in Ce0.8Sn0.2O2,activation of oxygen is further enhanced as observed from the H-2/TPR study. Both EXAFS analysis and DFT calculation reveal that in the solid solution Ceexhibits 4 + 4 coordination, Sri exhibits 4 + 2 + 2 coordination and Pd has 4 + 3 coordination. While the oxygen in the First four coordination with short M-O bonds are strongly held in the lattice, the oxygens in the second and higher coordinations with long M-O bonds are weakly bound, and they are the activated oxygen ill the lattice. Bond valence analysis shows that oxygen with valencies as low its 1.65 are created by the Sn and Pd ion Substitution. Another interesting observation is that H-2/TPR experiment of Ce1-xSnxO2 shows a broad peak starting from 200 to 500 degrees C, while the same reduction is achieved in a single step at similar to 110 degrees C in presence Pd2+ on. Substitution of Pd2+ ion thus facilitates synergistic reduction of the catalyst at lower temperature. We have shown that simultaneous reduction of the Ce4+ and Sr4+ ions by Pd-0 is the synergistic interaction leading to high oxygen storage capacity at low temperature.
Resumo:
The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.
Resumo:
It has long been argued that better timing precision allowed by satellites like Rossi X-ray Timing Explorer (RXTE) will allow us to measure the orbital eccentricity and the angle of periastron of some of the bright persistent high-mass X-ray binaries (HMXBs) and hence a possible measurement of apsidal motion in these system. Measuring the rate of apsidal motion allows one to estimate the apsidal motion constant of the mass losing companion star and hence allows for the direct testing of the stellar structure models for these giant stars present in the HMXBs. In the present paper, we use the archival RXTE data of two bright persistent sources, namely Cen X-3 and SMC X-1, to measure the very small orbital eccentricity and the angle of periastron. We find that the small variations in the pulse profiles of these sources, rather than the intrinsic time resolution provided by RXTE, limit the accuracy with which we can measure arrival time of the pulses from these sources. This influences the accuracy with which one can measure the orbital parameters, especially the very small eccentricity and the angle of periastron in these sources. The observations of SMC X-1 in the year 2000 were taken during the high-flux state of the source and we could determine the orbital eccentricity and omega using this data set.
Resumo:
First-principles calculations were performed for orthorhombic HgO, rhombohedral and cubic phases of HgTiO3 (HTO) and HgPbO3 (HPO). The calculations show that in the rhombohedral phase HTO is a direct gap insulator with a gap of ~1.6 eV. The rhombohedral phase of HPO, on the other hand, shows a weak metallic character. The results provide an explanation for the electrical properties of these compounds. The cubic phases of HTO and HPO are invariably metallic in nature, thereby suggesting that for HTO the rhombohedral–cubic transition must also be accompanied by a change in the electrical state. Examination of the electronic density of states of these systems revealed no significant on-site mixing of Hg 5d and Hg 6s states in any of these materials.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 Å, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34–37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in 2H, 13C, and 15N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435–37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.
Resumo:
The pentapeptide Tos-(Aib)5-OMe adopts a 310 helical conformation in the solid state, with three consecutive Type III B-turns stabilized by intramolecular hydrogen bonds.
Resumo:
The synthesis of the octapeptide, benzyloxycarbonyl-(-aminoisobutyryl-L-prolyl)4-methyl ester [Z-(Aib-Pro)4-OMe] and an analysis of its solution conformation is reported. The octapeptide is shown to possess three strong intramolecular hydrogen bonds on the basis of studies of the solvent and temperature dependence of NH chemical shifts and rates of hydrogen-deuterium exchange. 13C studies are consistent with a structure involving only trans Aib-Pro bonds, while ir experiments support a hydrogen-bonded conformation. The Aib 3, 5, and 7 NH groups are shown to participate in hydrogen bonding. A 310 helical conformation compatible with the spectroscopic data is suggested. The proposed conformation consists of three type III -turns with Aib and Pro at the corners and stabilized by 4 1 intramolecular hydrogen bonds.
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamihdaes been shown to possess one intramolecular hydrogen bond in (CD&SO solution, by 'H-nmr methods, suggesting the existence of p-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II P-turn conformations are about 2 kcal mol-' more stable than Type 111 structures. A crystallographic study has established the Type I1 /%turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 8, b = 11.421 A, c = 12.966 A, /3 = 97.55", and 2 = 2. The structure has been refined to a final R value of 0.061. The Type I1 p-turn conformation is stabilized by an intramolecular 4 - 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are @pro= -57.8", $pro = 139.3', @Aib = 61.4', and $Ajb = 25.1'. The Type 11 /%turn conformation for Pro-Aib in this peptide is compared with the Type I11 structures observed for the same segment in larger peptides.
Resumo:
The structures of (1 - x) Na0.5Bi0.5TiO3-(x) CaTiO3 at room temperature have been investigated using neutron powder diffraction and dielectric studies. The system exhibits an orthorhombic (Pbnm) structure for x >= 0.15 and rhombohedral (R3c) for x <= 0.05. For x = 0.10, though the neutron diffraction pattern shows features of the orthorhombic (Pbnm) structure, Rietveld refinement using this structure shows a drastic reduction in the in-phase tilt angle (similar to 4 degrees) as compared to the corresponding value (similar to 8 degrees) for a neighbouring composition x = 0.15. The neutron diffraction pattern of x = 0.10 could be fitted equally well using a two-phase model (R3c + Pbnm) with orthorhombic as the minor phase (22%), without the need for a drastic decrease in the in-phase tilt angle. The dielectric studies of x = 0.10 revealed the presence of the polar R3c phase, thereby favouring the phase coexistence model, instead of a single-phase Pbnm structure, for this composition.
Resumo:
1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.