971 resultados para ROTATION CURVES
Resumo:
We present the results from a simultaneous estimation of the gravity field, Earth rotation parameters, and station coordinates from combined SLR solutions incorporating up to nine geodetic satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Lares, Blits and LARES. These solutions cover all three pillars of satellite geodesy and ensure full consistency between the Earth rotation parameters, gravity field coefficients, and geometry-related parameters. We address benefits emerging from such an approach and discuss particular aspects and limitations of the gravity field recovery using SLR data. The current accuracy of SLR-derived polar motion, by the means of WRMS w.r.t. IERS-08-C04 series, is at a level of 118-149 μas, which corresponds to 4 to 5 mm on the Earth’s surface. The WRMS of SLR-derived Length-of-Day, when the gravity field parameters are simultaneously estimated, is 56 μs/day, corresponding to about 26 mm on the ground, and the mean bias of SLR-derived Length-of-Day is 6.3 μs/day, corresponding to 3 mm.
Resumo:
Background Acetabular anatomy on AP pelvic radiographsdepends on pelvic orientation during radiograph acquisition. However, not all parameters may change to a clinically relevant degree with differences in pelvic orientation. This issue may influence the diagnosis of acetabular pathologies and planning of corrective acetabular surgery (reorientation or rim trimming). However, to this point, it has not been well characterized. Questions/purposes We asked (1) which radiographic parameters change in a clinical setting when normalized to neutral pelvic orientation; (2) which parameters do not change in an experimental setting when the pelvis is experimentally rotated/tilted; and (3) which of these changes are ‘‘ultimately’’ relevant based on a prespecified definition of relevance. Methods In a clinical setup, 11 hip parameters were evaluated in 101 patients (126 hips) by two observers and the interobserver difference was calculated. All parameters were normalized to an anatomically defined neutral pelvic orientation with the help of a lateral pelvic radiograph and specific software. Differences between nonnormalized and normalized values were calculated (effect of normalization). In an experimental setup involving 20 cadaver pelves (40 hips), the maximum range for each parameter was computed with the pelvis rotated (range, −12° to 12°) and tilted (range, −24° to 24°). ‘‘Ultimately’’ relevant changes existed if the effect of normalization exceeded the interobserver difference (eg, 37% versus 6% for prevalence of a positive crossover sign) and/or the maximum experimental range exceeded 1 SD of interobserver difference (eg, 27% versus 6% for anterior acetabular coverage). Results In the clinical setup, all parameters except the ACM angle and craniocaudal acetabular coverage changed when being normalized, eg, effect of normalization for lateral center-edge angle, acetabular index, and sharp angle ranged from −5° to 4° (p values < 0.029). In the experimental setup, five parameters showed no major changes, whereas six parameters did change (all p values < 0.001). Ultimately relevant changes were found for anteroposterior acetabular coverage, retroversion index, and prevalence of a positive crossover or posterior wall sign. Conclusions Lateral center-edge angle, ACM angle, Sharp angle, acetabular and extrusion index, and craniocaudal acetabular coverage showed no relevant changes with varying pelvic orientation and can therefore be acquired independent from individual pelvic tilt and rotation in clinical practice. In contrast, anteroposterior acetabular coverage, crossover and posterior wall sign, and retroversion index call for specific efforts that address individual pelvic orientation such as computer-assisted evaluation of radiographs. Level of Evidence Level III, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Let Y be a stochastic process on [0,1] satisfying dY(t)=n 1/2 f(t)dt+dW(t) , where n≥1 is a given scale parameter (`sample size'), W is standard Brownian motion and f is an unknown function. Utilizing suitable multiscale tests, we construct confidence bands for f with guaranteed given coverage probability, assuming that f is isotonic or convex. These confidence bands are computationally feasible and shown to be asymptotically sharp optimal in an appropriate sense.
Resumo:
We discuss the topological nature of the boundary spacetime, the conformal infinity of the ambient cosmological metric. Due to the existence of a homothetic group, the bounding spacetime must be equipped not with the usual Euclidean metric topology but with the Zeeman fine topology. This then places severe constraints to the convergence of a sequence of causal curves and the extraction of a limit curve, and also to our ability to formulate conditions for singularity formation.
Resumo:
CONTEXT Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by a) the metabolites of the fetal-placental unit at birth, b) the fetal adrenal androgens until its involution 3-6 months postnatally, and c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.
Resumo:
Suppose that one observes independent random variables (X1, Y1), (X2, Y2), …, (Xn, Yn) in R2 with unknown distributions, except that Median(Yi | Xi = M(x) for some unknown isotonic function M. We describe an explicit algorithm for the computation of confidence bands for the median function M whose running time is of order O(n2). The bands rely on multiscale sign tests and are shown to have desirable asymptotic properties.
Resumo:
The currently proposed space debris remediation measures include the active removal of large objects and “just in time” collision avoidance by deviating the objects using, e.g., ground-based lasers. Both techniques require precise knowledge of the attitude state and state changes of the target objects. In the former case, to devise methods to grapple the target by a tug spacecraft, in the latter, to precisely propagate the orbits of potential collision partners as disturbing forces like air drag and solar radiation pressure depend on the attitude of the objects. Non-resolving optical observations of the magnitude variations, so-called light curves, are a promising technique to determine rotation or tumbling rates and the orientations of the actual rotation axis of objects, as well as their temporal changes. The 1-meter telescope ZIMLAT of the Astronomical Institute of the University of Bern has been used to collect light curves of MEO and GEO objects for a considerable period of time. Recently, light curves of Low Earth Orbit (LEO) targets were acquired as well. We present different observation methods, including active tracking using a CCD subframe readout technique, and the use of a high-speed scientific CMOS camera. Technical challenges when tracking objects with poor orbit redictions, as well as different data reduction methods are addressed. Results from a survey of abandoned rocket upper stages in LEO, examples of abandoned payloads and observations of high area-to-mass ratio debris will be resented. Eventually, first results of the analysis of these light curves are provided.
Resumo:
The aim of this study was to examine whether athletes differ from nonathletes regarding their mental rotation performance. Furthermore, it investigated whether athletes doing sports requiring distinguishable levels of mental rotation (orienteering, gymnastics, running), as well as varying with respect to having an egocentric (gymnastics) or an allocentric perspective (orienteering), differ from each other. Therefore, the Mental Rotations Test (MRT) was carried out with 20 orienteers, 20 gymnasts, 20 runners, and 20 nonathletes. The results indicate large differences in mental rotation performance, with those actively doing sports outperforming the nonathletes. Analyses for the specific groups showed that orienteers and gymnasts differed from the nonathletes, whereas endurance runners did not. Contrary to expectations, the mental rotation performance of gymnasts did not differ from that of orienteers. This study also revealed gender differences in favor of men. Implications regarding a differentiated view of the connection between specific sports and mental rotation performance are discussed.
Resumo:
Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.
Resumo:
Context. We investigate the dust coma within the Hill sphere of comet 67P/Churyumov-Gerasimenko. Aims. We aim to determine osculating orbital elements for individual distinguishable but unresolved slow-moving grains in the vicinity of the nucleus. In addition, we perform photometry and constrain grain sizes. Methods. We performed astrometry and photometry using images acquired by the OSIRIS Wide Angle Camera on the European Space Agency spacecraft Rosetta. Based on these measurements, we employed standard orbit determination and orbit improvement techniques. Results. Orbital elements and effective diameters of four grains were constrained, but we were unable to uniquely determine them. Two of the grains have light curves that indicate grain rotation. Conclusions. The four grains have diameters nominally in the range 0.14-0.50 m. For three of the grains, we found elliptic orbits, which is consistent with a cloud of bound particles around the nucleus. However, hyperbolic escape trajectories cannot be excluded for any of the grains, and for one grain this is the only known option. One grain may have originated from the surface shortly before observation. These results have possible implications for the understanding of the dispersal of the cloud of bound debris around comet nuclei, as well as for understanding the ejection of large grains far from the Sun.