987 resultados para RING FORMATION
An investigation of bond formation in the weakly bound first excited 1Σ and lowest 3Σ states of HeH+
Resumo:
The role of the electronic kinetic energy and its Cartesian components is examined during the formation of the first excited 1�£ and the lowest 3�£ states of HeH+ employing wavefunctions of multi-configuration type with basis orbitals in elliptic coordinates. Results show that the bond formation in these states is preceded primarily by a charge transfer from H to He+ rather than by polarisation of the H-orbital by He+
Resumo:
High concentration of L-cystine (0.25%) when present in a glucose-mineral salt medium inhibited sporulation-specific events like protease production, calcium uptake and dipicolinic acid synthesis inBacillus thuringiensis var.thuringiensis. In addition, the enzymes of the Krebs cycle from aconitase onwards were completely inhibited by a high concentration of cystine. At a low concentration of cystine (0.05%), none of the above mentioned macromolecular changes were affected. Lipid synthesis monitored by [1,214 C]-acetate incorporation into lipid as well as into whole cells was completely inhibited.
Resumo:
The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation in Bacillus thuringiensis var. thuringiensis was studied. The effect was well pronounced when the systine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, isaconitate, oxalosuccinate, ∝ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.
Resumo:
In the present investigation, experiments were conducted on a tribological couple-copper pin against steel plate-using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates-roughness and texture-were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.
Resumo:
The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.
Resumo:
Crystal structures of six isopropylidene nucleoside derivatives are described. The results show that, under external cyclic constraints, the ribose assumes a variety of unusual conformations. In those compounds which possess a base-to-sugar cyclization through the C(4′) atom, the furanose pucker is predominantly C(4′)-endo, O(4′)-exo. The possible relevance of the sulphur geometry in two of the compounds to certain structural aspects of the action of the enzyme thymidylate synthetase is also pointed out.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Presented in this letter is a critical discussion of a recent paper on experimental investigation of the enthalpy, entropy and free energy of formation of gallium nitride (GaN) published in this journal [T.J. Peshek, J.C. Angus, K. Kash, J. Cryst. Growth 311 (2008) 185-189]. It is shown that the experimental technique employed detects neither the equilibrium partial pressure of N-2 corresponding to the equilibrium between Ga and GaN at fixed temperatures nor the equilibrium temperature at constant pressure of N-2. The results of Peshek et al. are discussed in the light of other information on the Gibbs energy of formation available in the literature. Entropy of GaN is derived from heat-capacity measurements. Based on a critical analysis of all thermodynamic information now available, a set of optimized parameters is identified and a table of thermodynamic data for GaN developed from 298.15 to 1400 K.
Resumo:
A compilation of crystal structure data on deoxyribo- and ribonucleosides and their higher derivatives is presented. The aim of this paper is to highlight the flexibility of deoxyribose and ribose rings. So far, the conformational parameters of nucleic acids constituents of ribose and deoxyribose have not been analysed separately. This paper aims to correlate the conformational parameters with the nature and puckering of the sugar. Deoxyribose puckering occurs in the C2′ endo region while ribose puckering is observed both in the C3′ endo and C2′ endo regions. A few endocyclic and exocyclic bond angles depend on the puckering and the nature of the sugar. The majority of structures have an anti conformation about the glycosyl bond. There appears to be a puckering dependence on the torsion angle about the C4′---C5′ bonds. Such stereochemical information is useful in model building studies of polynucleotides and nucleic acids.
Resumo:
An attempt has been made to bring the literature on polymeric peroxides together from all angles in order to present a comprehensive picture about them. Both polyperoxides, where the peroxide group has been attached to the main chain, and polymeric hydroperoxides, where the peroxide group is present as a side chain, have been considered. Various aspects such as formation, thermal decomposition characteristics, photodecomposition, and analysis of peroxides have been discussed.
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
An analytical approach for the description of the ring puckerings from the endocyclic ring torsion angles of a five-membered saturated ring is given. This description is independent of any reference conformation. For the description, a revised notation for the endocyclic ring torsion angles has been suggested. The application of this method to the furanose ring is described in detail.