574 resultados para REIDEMEISTER TORSION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a gravitational analogue of the Lorentz force. Then, we have shown that this force equation can be rewritten in terms of magnitudes related to either the teleparallel or the Riemannian structures induced in spacetime by the presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of force. In the second, it gives the usual geodesic equation of general relativity. The main conclusion is that scalar matter is able to feel any one of the above spacetime geometries, the teleparallel and the metric ones. Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same physical trajectory for a spinless particle in a gravitational field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study between the metric and the teleparallel descriptions of gravitation is made for the case of a scalar field. In contrast to the current belief that only spin matter could detect the teleparallel geometry, scalar matter being able to feel the metric geometry only, we show that a scalar field is able not only to feel anyone of these geometries, but also to produce torsion. Furthermore, both descriptions are found to be completely equivalent, which means that in fact, besides coupling to curvature, a scalar field couples also to torsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (rutile) has a lot of interesting and useful features and hence is widely utilized for application. It has been used as white pigment, photocatalyst, biocompatible material and semiconductor material used in solar battery. In semiconducting TiO2 oxygen vacancies are said to play an important role in the electrical conduction. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in TiO2 samples using a torsion pendulum operating in frequencies around 40Hz, in the temperature range between -173°C to 330°C with heating rate of 1°C/min. The results shown a reduction in the elasticity modulus with the increase in the corn starch content used for this consolidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering ceramics have found use in many applications, such as engine parts, ball bearings, artificial bone and hip replacements and gyroscopes, because of their good chemical inertness, hardness, high temperature stability and excellent wear resistance. Oxide ceramic may meet these demands. Alumina (Al2O3) ceramics offer a high potential for many engineering applications, such as wear- and/or corrosion-resistant components, and as material for substrates or housings in microelectronic devices. Alumina is used among other things for seal ring, draw-cones, guides, water mixing tapes, bearing parts, medical prostheses and cutting tools. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occurs in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in Al2O3 samples using commercial starch. These measurements were carried out in a torsion pendulum operating in frequencies around 40 Hz. The results shown strongly influence of the type of forming in the elastic modulus obtained by anelastic relaxation measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the step in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and 05 of the lattice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study evaluated the potential effects of denture base resin water storage time and an effective denture disinfection method (microwave irradiation at 650 W for 6 minutes) on the torsional bond strength between two hard chairside reline resins (GC Reline and New Truliner) and one heat-polymerizing denture base acrylic resin (Lucitone 199). Materials and Methods: Cylindrical (30 x 3.9 mm) denture base specimens (n = 160) were stored in water at 37°C (2 or 30 days) before bonding. A section (3.0 mm) was removed from the center of the specimens, surfaces prepared, and the reline materials packed into the space. After polymerization, specimens were divided into four groups (n = 10): Group 1 (G1) - tests performed after bonding; Group 2 (G2) - specimens immersed in water (200 ml) and irradiated twice (650 W for 6 minutes); Group 3 (G3) - specimens irradiated daily until seven cycles of disinfection; Group 4 (G4) - specimens immersed in water (37°C) for 7 days. Specimens were submitted to a torsional test (0.1 Nm/min), and the torsional strengths (MPa) and the mode of failure were recorded. Data from each reline material were analyzed by a two-way analysis of variance, followed by Neuman-Keuls test (p = 0.05). Results: For both Lucitone 199 water storage periods, before bonding to GC Reline resin, the mean torsional strengths of G2 (2 days - 138 MPa; 30 days - 132 MPa), G3 (2 days - 126 MPa; 30 days - 130 MPa), and G4 (2 days - 130 MPa; 30 days - 137 MPa) were significantly higher (p < 0.05) than G1 (2 days - 108 MPa; 30 days - 115 MPa). Similar results were found for Lucitone 199 specimens bonded to New Truliner resin, with G1 specimens (2 days - 73 MPa; 30 days - 71 MPa) exhibiting significantly lower mean torsional bond strength (p < 0.05) than G2 (2 day - 86 MPa; 30 days - 90 MPa), G3 (2 days - 82 MPa; 30 days - 82 MPa), and G4 specimens (2 days - 78 MPa; 30 days - 79 MPa). The adhesion of both materials was not affected by water storage time of Lucitone 199 (p > 0.05). GC reline showed a mixed mode of failure (adhesive/cohesive) and New Truliner failed adhesively. Conclusions: Up to seven microwave disinfection cycles did not decrease the torsional bond strengths between the hard reline resins, GC Reline and New Truliner to the denture base resin Lucitone 199. The effect of additional disinfection cycles on reline material may be clinically significant and requires further study. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain refinement of low carbon steel via the warm deformation of martensite during torsion testing was investigated. At the beginning of straining, laths with high dislocation density were observed. After large deformations, a ferrite matrix with grain size close to 1μm and dispersed cementite particles were attained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since Ranzini suggested supplementing the SPT test with measurement of the torque required to turn the split spoon sampler after driving, many Brazilian engineers have been using this in the design of pile foundations. This paper presents a study of the rod length influence in the torque measurement. A theoretical study of material resistance considering torsion and bending in a thin wall tubular steel shaft was performed. It makes possible to conclude that the shearing tension caused by the proper weight represents less than 1% of the shearing tension caused by the turning moment. In addition, an experimental study was done with electric torquemeters fixed in a horizontal rod system. The tests were being carried out to analyze rods of one meter to twenty meters in length and the measurements were collected at the ends of each rod length verifying the efficiency data. As a result, it is possible to verify that the torque difference through rod length is lower than minimum scales of mechanical torquemeters that are used on practical engineering. Also a fact to be considered is a big torque loss for values under 20 N.m of applied torque. This way, the SPT-T is not adequate to low consistency soil. Copyright ASCE 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the particle production in a toroidally compactified space-time due to the expansion of a Friedmann cosmological model in ℝ3 × S1 outside a U(1) local cosmic string. The case of a Friedmann space-time is also investigated where torsion is incorporated in the connection. We present a generalization to toroidal compactification of p extra dimensions, where the topology is given by ℝ3 × Tp. Some implications are presented and discussed. Besides the dynamics of space-time, we investigate in detail the physical consequences of the topological transformations. © World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.