898 resultados para REGULATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gac/Rsm signal transduction pathway positively regulates secondary metabolism, production of extracellular enzymes, and biocontrol properties of Pseudomonas fluorescens CHA0 via the expression of three noncoding small RNAs, termed RsmX, RsmY, and RsmZ. The architecture and function of the rsmY and rsmZ promoters were studied in vivo. A conserved palindromic upstream activating sequence (UAS) was found to be necessary but not sufficient for rsmY and rsmZ expression and for activation by the response regulator GacA. A poorly conserved linker region located between the UAS and the -10 promoter sequence was also essential for GacA-dependent rsmY and rsmZ expression, suggesting a need for auxiliary transcription factors. One such factor involved in the activation of the rsmZ promoter was identified as the PsrA protein, previously recognized as an activator of the rpoS gene and a repressor of fatty acid degradation. Furthermore, the integration host factor (IHF) protein was found to bind with high affinity to the rsmZ promoter region in vitro, suggesting that DNA bending contributes to the regulated expression of rsmZ. In an rsmXYZ triple mutant, the expression of rsmY and rsmZ was elevated above that found in the wild type. This negative feedback loop appears to involve the translational regulators RsmA and RsmE, whose activity is antagonized by RsmXYZ, and several hypothetical DNA-binding proteins. This highly complex network controls the expression of the three small RNAs in response to cell physiology and cell population densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth, and suggests that JA signalling triggers cell divisions in this particular context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Interleukin-1beta (IL-1beta) is a potent inflammatory cytokine, which is implicated in acute and chronic inflammatory disorders. The activity of IL-1beta is regulated by the proteolytic cleavage of its inactive precursor resulting in the mature, bioactive form of the cytokine. Cleavage of the IL-1beta precursor is performed by the cysteine protease caspase-1, which is activated within protein complexes termed 'inflammasomes'. To date, four distinct inflammasomes have been described, based on different core receptors capable of initiating complex formation. Both the host and invading pathogens need to control IL-1beta production and this can be achieved by regulating inflammasome activity. However, we have, as yet, little understanding of the mechanisms of this regulation. In particular the negative feedbacks, which are critical for the host to limit collateral damage of the inflammatory response, remain largely unexplored. Recent exciting findings in this field have given us an insight into the potential of this research area in terms of opening up new therapeutic avenues for inflammatory disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we discuss pros and cons ofdifferent models for financial market regulationand supervision and we present a proposal forthe re-organisation of regulatory and supervisoryagencies in the Euro Area. Our arguments areconsistent with both new theories and effectivebehaviour of financial intermediaries inindustrialized countries. Our proposed architecturefor financial market regulation is based on theassignment of different objectives or "finalities"to different authorities, both at the domesticand the European level. According to thisperspective, the three objectives of supervision- microeconomic stability, investor protectionand proper behaviour, efficiency and competition- should be assigned to three distinct Europeanauthorities, each one at the centre of a Europeansystem of financial regulators and supervisorsspecialized in overseeing the entire financialmarket with respect to a single regulatoryobjective and regardless of the subjective natureof the intermediaries. Each system should bestructured and organized similarly to the EuropeanSystem of Central Banks and work in connectionwith the central bank which would remain theinstitution responsible for price and macroeconomicstability. We suggest a plausible path to buildour 4-peak regulatory architecture in the Euro area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The root-colonizing Pseudomonas fluorescens strain CHA0 is a biocontrol agent of soil-borne plant diseases caused by fungal and oomycete pathogens. Remarkably, this plant-beneficial pseudomonad is also endowed with potent insecticidal activity that depends on the production of a large protein toxin termed Fit (for P. fluorescens insecticidal toxin). In our present work, the genomic locus encoding the P. fluorescens insect toxin is subjected to a detailed molecular analysis. The Fit toxin gene fitD is flanked upstream by the fitABC genes and downstream by the fitE gene that encode the ABC transporter, membrane fusion, and outer membrane efflux components of a type I protein secretion system predicted to function in toxin export. The fitF, fitG, and fitH genes located downstream of fitE code for regulatory proteins having domain structures typical of signal transduction histidine kinases, LysR-type transcriptional regulators, and response regulators, respectively. The role of these insect toxin locus-associated control elements is being investigated with mutants defective for the regulatory genes and with GFP-based reporter fusions to putative promoter regions upstream of the transporter genes fitA and fitE, the toxin gene fitD, and the regulatory genes fitF and fitH. Our preliminary findings suggest that the three regulators interact with known global regulators of biocontrol factor expression to control Fit toxin expression and secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant hormones auxin and brassinosteroid are both essential regulators of plant growth and known to influence both cell division and cell elongation in various developmental contexts. These physiological effects of auxin and brassinosteroid have been known for many years. Based on observations from external simultaneous application of both hormones to plant tissues, it has been suggested that they act in an interdependent and possibly synergistic manner. Recent work in the model plant Arabidopsis thaliana suggests that, at the molecular level, auxin-brassinosteroid synergism manifests itself in the regulation of the expression of common target genes. However, whether this reflects genuine hormone pathway-dependent crosstalk modulation of the transcription machinery or rather indirect effects of hormone action on other cellular activities, such as hormone biosynthesis or the polar transport of auxin, is not entirely clear. This article reviews the evidence for transcriptional crosstalk between auxin and brassinosteroid and its molecular basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive. Here we report a previously unrecognized role of PPARβ/δ as a key regulator of bone turnover and the crosstalk between osteoblasts and osteoclasts. In contrast to activation of PPARγ, activation of PPARβ/δ amplified Wnt-dependent and β-catenin-dependent signaling and gene expression in osteoblasts, resulting in increased expression of osteoprotegerin (OPG) and attenuation of osteoblast-mediated osteoclastogenesis. Accordingly, PPARβ/δ-deficient mice had lower Wnt signaling activity, lower serum concentrations of OPG, higher numbers of osteoclasts and osteopenia. Pharmacological activation of PPARβ/δ in a mouse model of postmenopausal osteoporosis led to normalization of the altered ratio of tumor necrosis factor superfamily, member 11 (RANKL, also called TNFSF11) to OPG, a rebalancing of bone turnover and the restoration of normal bone density. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of osteoporosis and related diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines two principal categories of manipulative behaviour. The term'macro-manipulation' is used to describe the lobbying of regulators to persuadethem to produce regulation that is more favourable to the interests of preparers.'Micro-manipulation' describes the management of accounting figures to produce abiased view at the entity level. Both categories of manipulation can be viewed asattempts at creativity by financial statement preparers. The paper analyses twocases of manipulation which are considered in an ethical context. The paperconcludes that the manipulations described in it can be regarded as morallyreprehensible. They are not fair to users, they involve an unjust exercise ofpower, and they tend to weaken the authority of accounting regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.