1000 resultados para REDES NEURAIS
Resumo:
Physiologists and animal scientists try to understand the relationship between ruminants and their environment. The knowledge about feeding behavior of these animals is the key to maximize the production of meat and milk and their derivatives and ensure animal welfare. Within the area called precision farming, one of the goals is to find a model that describes animal nutrition. Existing methods for determining the consumption and ingestive patterns are often time-consuming and imprecise. Therefore, an accurate and less laborious method may be relevant for feeding behaviour recognition. Surface electromyography (sEMG) is able to provide information of muscle activity. Through sEMG of the muscles of mastication, coupled with instrumentation techniques, signal processing and data classification, it is possible to extract the variables of interest that describe chewing activity. This work presents a new method for chewing pattern evaluation, feed intake prediction and for the determination of rumination, food and daily rest time through ruminant animals masseter muscle sEMG signals. Short-term evaluation results are shown and discussed, evidencing employed methods viability.
Resumo:
Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2016.
Resumo:
The artificial lifting of oil is needed when the pressure of the reservoir is not high enough so that the fluid contained in it can reach the surface spontaneously. Thus the increase in energy supplies artificial or additional fluid integral to the well to come to the surface. The rod pump is the artificial lift method most used in the world and the dynamometer card (surface and down-hole) is the best tool for the analysis of a well equipped with such method. A computational method using Artificial Neural Networks MLP was and developed using pre-established patterns, based on its geometry, the downhole card are used for training the network and then the network provides the knowledge for classification of new cards, allows the fails diagnose in the system and operation conditions of the lifting system. These routines could be integrated to a supervisory system that collects the cards to be analyzed
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
The petrochemical industry has as objective obtain, from crude oil, some products with a higher commercial value and a bigger industrial utility for energy purposes. These industrial processes are complex, commonly operating with large production volume and in restricted operation conditions. The operation control in optimized and stable conditions is important to keep obtained products quality and the industrial plant safety. Currently, industrial network has been attained evidence when there is a need to make the process control in a distributed way. The Foundation Fieldbus protocol for industrial network, for its interoperability feature and its user interface organized in simple configuration blocks, has great notoriety among industrial automation network group. This present work puts together some benefits brought by industrial network technology to petrochemical industrial processes inherent complexity. For this, a dynamic reconfiguration system for intelligent strategies (artificial neural networks, for example) based on the protocol user application layer is proposed which might allow different applications use in a particular process, without operators intervention and with necessary guarantees for the proper plant functioning
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
No Estado do Paran??, o movimento de forma????o e desenvolvimento dos servidores p??blicos ?? difundido a partir da cria????o da Escola de Governo, em 2004. Este artigo tem como objetivo apresentar a experi??ncia da constru????o de uma rede de capacita????o em pol??ticas p??blicas voltada ?? qualifica????o dos quadros de carreira de n??vel superior, analisando os desdobramentos e os fatores limitadores da rede. Apresenta a rede de capacita????o constru??da em parceria entre a Escola de Governo do Paran?? e seis Institui????es P??blicas de Ensino Superior (Universidade Estadual de Londrina, Universidade Estadual de Maring??, Universidade Estadual de Ponta Grossa, Universidade do Centro-Oeste do Paran??, Universidade do Oeste do Paran??, e a Universidade Federal do Paran??). A metodologia utilizada neste paper ?? o estudo de caso que relatar?? a constru????o da rede de capacita????o com as seguintes etapas: identifica????o dos diversos atores e a institui????o de c??mara t??cnica para a discuss??o e formata????o de curso de especializa????o que atendesse ??s necessidades e especificidades da Escola de Governo do Paran??; o processo seletivo; o desenvolvimento do Curso de P??s-Gradua????o, pelas Universidades p??blicas parceiras; o acompanhamento do Curso pela equipe da Escola de Governo do Paran??; os projetos de interven????o feitos pelos alunos; a dissemina????o do conhecimento produzido. O ponto alto do trabalho em rede se deu com as discuss??es do Curso na C??mara T??cnica: tem??tica do curso, fontes de recursos, projeto do curso, o p??blico-alvo, o ambiente de aprendizagem, o acesso ?? tecnologia, o suporte acad??mico e administrativo, o acompanhamento e avalia????o, a difus??o/dissemina????o do conhecimento. Dos resultados obtidos a partir da intera????o entre os integrantes da rede destacam-se: 19 turmas de um curso de P??s-Gradua????o em Formula????o e Gest??o de Pol??ticas P??blicas num total de 572 especialistas, al??m da realiza????o de um Semin??rio de Gest??o P??blica no Paran??, da cria????o do Reposit??rio Institucional SabeRES em Gest??o P??blica de acesso livre e da publica????o de livros sobre Gest??o de Pol??ticas P??blicas no Paran??, contendo artigos publicados pelos alunos sobre tem??ticas relacionadas ?? gest??o p??blica. Com isso, o Estado do Paran?? iniciou um processo de constru????o de saberes em gest??o p??blica a partir da reflex??o de suas pr??prias viv??ncias e experi??ncias, e de uma rela????o harmoniosa e inovadora entre produtores de saberes ??? a institui????o acad??mica e a administra????o p??blica ??? os quais criaram condi????es para a constru????o do conhecimento, o que n??o teria sido poss??vel de maneira isolada. Essa rede de conhecimento em pol??ticas p??blicas, por ter sido coletivamente constru??da, revelou que mais importante que o conhecimento em si e o processo da sua constru????o, foi a transposi????o desses resultados para a realidade n??o apenas dos produtores desse conhecimento, mas para todos os que atuam e s??o beneficiados pela gest??o p??blica
Resumo:
O curso tem como objetivo apresentar as principais pol??ticas p??blicas implementadas pelos sistemas pol??ticos contempor??neos decorrentes de uma complexa e cont??nua intera????o entre diversos atores, tanto dentro quanto fora do governo.Nesse sentido, busca-se compreender a estrutura subjacente a essa intera????o, denominada rede de pol??ticas p??blicas. Assim, o curso discute as principais caracter??sticas destas redes, suas possibilidades e limita????es
Resumo:
O principal objetivo deste livro ?? constituir uma fonte de pesquisa para o estudo do processo de produ????o e implementa????o de pol??ticas p??blicas. Por meio de textos selecionados, analisa-se o pr??prio conceito de pol??ticas p??blicas, discute-se as defini????es utilizadas para distinguir suas diversas fases e apresenta-se algumas das principais correntes te??ricas de an??lise sobre o processo de pol??ticas p??blicas.