992 resultados para RANS (Reynolds-Averaged Navier-Stokes)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been made on the influence of the open trailing edge in airfoils used in different devices relating their aerodynamic performances. Wind tunnel tests have been made at different Reynolds numbers and angles of attack in order to show this effect. Besides, a quantitative study of the aerodynamic properties has been made based on the different trailing edge thickness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new form of the one-dimensional Reynolds equation for lubricants whose rheological behaviour follows a modified Carreau rheological model proposed by Bair. The results of the shear stress and flow rate obtained through a new Reynolds–Carreau equation are shown and compared with the results obtained by other researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with the effect of leading edge imperfections on the aerodynamic characteristics of a NACA 632-215 laminar aerofoil at low Reynolds numbers. Wind tunnel tests have been performed at different Reynolds numbers and angles of attack and global aerodynamic loads were measured. To perform these tests, a NACA 632-215 aerofoil was built up in two halves (corresponding to the upper side and to the lower side), the leading edge imperfection here considered being a slight displacement of half aerofoil with respect to the other. From experimental results, a quantitative measure of the influence of the leading edge displacement on the degradation of the aerofoil aerodynamic performances has been obtained. This allows the establishment of a criterion for an acceptance limit for this kind of imperfection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente Tesis Doctoral tiene como objetivo el estudio de flujo turbulento cargado con partículas sólidas a través de canales y tuberías de sección constante usando un enfoque Euleriano-Lagrangiano. El campo de flujo de la fase de transporte (aire) se resuelve usando simulación de grandes escalas (LES), implementada en un programa de volúmenes finitos mientras que las ecuaciones gobernantes de la fase dispersa son resueltas por medio de un algoritmo de seguimiento Lagrangiano de partículas que ha sido desarrollado y acoplado al programa que resuelve el flujo. Se estudia de manera sistemática y progresiva la interacción fluido→partícula (one-way coupling), a través de diferentes configuraciones geométricas en coordenadas cartesianas (canales de sección constante y variable) y en coordenadas cilíndricas (tuberías de sección constante y sección variable) abarcando diferentes números de Reynolds y diferentes tamaños de partículas; todos los resultados obtenidos han sido comparados con datos publicados previamente. El estudio de flujo multifásico a través de, tuberías de sección variable, ha sido abordada en otras investigaciones mayoritariamente de forma experimental o mediante simulación usando modelos de turbulencia menos complejos y no mediante LES. El patrón de flujo que se verifica en una tubería con expansión es muy complejo y dicha configuración geométrica se halla en múltiples aplicaciones industriales que involucran el transporte de partículas sólidas, por ello es de gran interés su estudio. Como hecho innovador, en esta tesis no solo se resuelven las estadísticas de velocidad del fluido y las partículas en tuberías con diferentes tamaños de expansión y diferentes regímenes de flujo sino que se caracteriza, usando diversas formulaciones del número de Stokes y el parámetro de arrastre, el ingreso y acumulación de partículas dentro de la zona de recirculación, obteniéndose resultados coincidentes con datos experimentales. ABSTRACT The objective of this Thesis research is to study the turbulent flow laden with solid particles through channels and pipes with using Eulerian-Lagrangian approach. The flow field of the transport phase (air ) is solved using large eddy simulation ( LES ) implemented in a program of finite volume while the governing equations of the dispersed phase are resolved by means of a particle Lagrangian tracking algorithm which was developed and coupled to principal program flow solver . We studied systematically and progressively the fluid interaction → particle ( one- way coupling ) , through different geometric configurations in Cartesian coordinates ( channel with constant and variable section) and in cylindrical coordinates ( pipes with constant section and variable section ) covering different Reynolds numbers and different particle sizes, all results have been compared with previously published data . The study of multiphase flow through, pipes with variable section has been addressed in other investigations predominantly experimentally or by simulation using less complex models and no turbulence by LES. The flow pattern is verified in a pipe expansion is very complex and this geometry is found in many industrial applications involving the transport of solid particles, so it is of great interest to study. As an innovator fact , in this Thesis not only finds fluid velocity statistics and particles with different sizes of pipe expansion and different flow regimes but characterized, using various formulations of the Stokes number and the drag parameter are resolved, the entry and accumulation of particles within the recirculation zone , matching results obtained with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo del presente trabajo es analizar la influencia que tiene sobre el comportamiento aerodinámico del perfil el hecho de que este presente un borde de salida más grueso que el perfil original del que se partía. Este estudio se ha centrado fundamentalmente en la influencia sobre su sustentación aerodinámica, resistencia aerodinámica y, especialmente, sobre la eficiencia aerodinámica del perfil, es decir sobre la relación entre la sustentación y la resistencia aerodinámica. También se ha analizado su influencia en otros aspectos aerodinámicos de los perfiles, como la entrada en pérdida, el ángulo de ataque de sustentación máxima, el ángulo de ataque de eficiencia máxima, el coeficiente de momento aerodinámico y la posición del centro aerodinámico. Estas imperfecciones en el borde de salida pueden aparecer en algunos procesos de fabricación de determinados elementos aerodinámicos, como alas de aviones no tripulados o palas de aeroturbina. Este fenómeno no ha sido analizado en profundidad en la literatura científica, aunque si que se ha analizado por varios autores la influencia sobre el perfil con el borde de salida truncado, o perfiles con la parte final regruesada, utilizados en otras aplicaciones. Para la realización de este estudio se han analizado perfiles de distinto tipo, laminares y no laminares, perfiles simétricos y con curvatura, así como perfiles con distinto espesor, a fin de comparar el grado de influencia del fenómeno estudiado sobre cada tipo de perfil para comparar su grado de sensibilidad a dicha anomalía geométrica. El estudio se ha realizado experimentalmente utilizando una cámara de ensayos diseñada específicamente a tal efecto, así como una balanza electrónica para medir las fuerzas y los momentos sobre el perfil, y un escáner de presiones para medir la distribución de presiones en determinados casos. También se ha abordado el estudio del comportamiento de perfiles con borde de salida más grueso que el nominal pero redondeado en vez de romo, con el objeto de analizar la eficacia de redondear el borde de salida, que es uno de los métodos que se puede utilizar para mitigar este efecto. Por otro lado, como el comportamiento de los perfiles aerodinámicos tiene una fuerte dependencia del número de Reynolds, el estudio se ha centrado en el análisis del comportamiento a bajos números de Reynolds debido a su uso reciente en una amplia gama de aplicaciones, desde vehículos aéreos no tripulados (UAV) hasta palas de aeroturbinas de baja potencia, e incluso debido a su uso potencial en aeronaves diseñadas para volar en atmósferas de baja densidad como la que existe en Marte. El interés de este estudio está orientado al establecimiento de criterios para cuantificar la influencia que tiene el hecho de que el borde de salida sea más grueso que el nominal en la degradación de su eficiencia aerodinámica máxima, con el objeto de poder establecer los límites de aceptación o rechazo de estas piezas una vez fabricadas, según el tipo de perfil aerodinámico utilizado. Del resultado del análisis de los casos estudiados se puede concluir que según aumenta el espesor del borde de salida, dentro del intervalo de estudio, la sustentación aerodinámica aumenta, así como la sustentación máxima, pero aumenta en mayor proporción la resistencia aerodinámica, por lo que se produce una reducción de la eficiencia aerodinámica, en particular de su valor máximo. Por otro lado, el hecho de redondear el borde de salida del perfil ayuda ligeramente a reducir este efecto. ABSTRACT The aim of this thesis is to analyze the effects of airfoil trailing edges thickness when this is thicker than the airfoil nominal. Several factors may lead to an airfoil trailing edge being thicker than the nominal airfoil, and this may affect various aerodynamic parameters. This study has focus on its influence on the airfoil’s aerodynamic lift, drag and, particularly on the aerodynamic efficiency of the airfoil, that is, the relationship between the aerodynamic lift and drag. It has also been studied how this fact may alter some other aerodynamic aspects of airfoils, such as stall, angle of attack of maximum lift, angle of maximum efficiency, aerodynamic moment coefficient and aerodynamic center position. These imperfections in the trailing edge may appear in some manufacturing processes of certain aerodynamic elements, such as unmanned aircraft wings or wind turbine blades. This phenomenon has not been deeply analyzed in the literature, although several authors have discussed its influence on airfoil with truncated trailing edge, or airfoils with thickened end, used in other applications. Various types of airfoils have been analyzed, laminar and non-laminar, symmetric and curved airfoils, and airfoils with different thickness, in order to compare the degree of influence of the phenomenon studied on each airfoil type and thus, to estimate the degree of sensitivity to the anomaly geometry. The study was carried out experimentally using a test chamber designed specifically for this purpose, as well as an electronic balance to measure the forces and moments on the airfoil, and a pressure scanner to measure distribution of pressures in certain cases. It has also been investigated the behavior of airfoils with trailing edge thicker than the nominal, but rounded instead of blunt, in order to analyze the effectiveness of the trailing edge rounding, which is one of the methods that can be used to mitigate this phenomenon. Moreover, as the behavior of the airfoil is highly dependent on the Reynolds number, the study has been focused on the analysis of the behavior at low Reynolds numbers due to recent use of low Reynolds numbers airfoils in a wide range of applications, from unmanned aerial vehicles (UAV) to low power wind turbine blades, or even due to their potential use in aircraft designed to fly in low density atmospheres as the one existing in Mars. The main purpose of this research is to establish a set of criteria for quantifying the influence that a thicker-than–nominal-trailing edge has in the degradation of maximum aerodynamic efficiency, aiming at establishing the acceptance limits for these pieces when they are manufactured, according to the type of airfoil used. Based on the results obtained from the analysis of the cases under study it can be concluded that increasing the thickness of the trailing edge, within the range of study, increases aerodynamic lift, as well as maximum lift, but the aerodynamic drag increases in a higher proportion, and consequently there is a reduction of aerodynamic efficiency, particularly, of its maximum value. On the other hand, rounding the trailing edge of the airfoil slightly helps to reduce this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta tesis se ha analizado la influencia que tienen ciertas imperfecciones en el borde de ataque de un perfil aerodinámico sobre el comportamiento aerodinámico general del mismo, centrándose fundamentalmente en la influencia sobre el coeficiente de sustentación máxima, coeficiente de resistencia y sobre la eficiencia aerodinámica del perfil, es decir sobre la relación entre la sustentación y la resistencia aerodinámicas. También se ha analizado su influencia en otros aspectos, como la entrada en pérdida, ángulo de ataque de sustentación máxima, ángulo de ataque de eficiencia máxima, coeficiente de momento aerodinámico y posición del centro aerodinámico. Estos defectos de forma en el borde de ataque pueden aparecer en algunos procesos de fabricación de determinados elementos aerodinámicos, como pueden ser las alas de pequeños aviones no tripulados o las palas de aeroturbina. Los perfiles se ha estudiado a bajos números de Reynolds debido a su uso reciente en una amplia gama de aplicaciones, desde vehículos aéreos no tripulados (UAV) hasta palas de aeroturbina de baja potencia, e incluso debido a su potencial utilización en aeronaves diseñadas para volar en atmósferas de baja densidad. El objeto de estudio de esta tesis no ha sido analizado en profundidad en la literatura científica, aunque sí que se ha estudiado por varios autores el comportamiento de perfiles a bajos números de Reynolds, con ciertas protuberancias sobre su superficie o también con formación de hielo en el borde de ataque. Para la realización de este estudio se han analizado perfiles de distinto tipo, perfiles simétricos y con curvatura, perfiles laminares, y todos ellos con igual o distinto espesor, con el objeto de obtener y comparar la influencia del fenómeno estudiado sobre cada tipo de perfil y así analizar su grado de sensibilidad a estas imperfecciones en la geometría del borde de ataque. Este trabajo ha sido realizado experimentalmente utilizando una túnel aerodinámico diseñado específicamente a tal efecto, así como una balanza electrónica para medir las fuerzas y los momentos sobre el perfil, y un escáner de presiones para medir la distribución de presiones sobre la superficie de los perfiles en determinados casos de interés. La finalidad de este estudio está orientada al establecimiento de criterios para cuantificar la influencia en la aerodinámica del perfil que tiene el hecho de que el borde de ataque presente una discontinuidad geométrica, con el objeto de poder establecer los límites de aceptación o rechazo de estas piezas en el momento de ser fabricadas. Del análisis de los casos estudiados se puede concluir que según aumenta el tamaño de la imperfección del borde de ataque, la sustentación aerodinámica máxima en general disminuye, al igual que la eficiencia aerodinámica máxima, pues la resistencia aerodinámica aumenta. Sin embargo, en algunos casos, para pequeños defectos se produce un efecto contrario. La sustentación máxima aumenta apreciablemente sin apenas pérdida de eficiencia aerodinámica máxima. ABSTRACT The aim of this thesis is to analyze the effects of leading edge imperfections on the aerodynamic characteristics of airfoils at low Reynolds numbers. The leading edge imperfection here considered being a slight displacement of half airfoil with respect to the other. This study has focus on its influence on the airfoil’s aerodynamic lift, drag and on the aerodynamic efficiency of the airfoil, that is, the relationship between the aerodynamic lift and drag. It has also been studied how this fact may alter some other aerodynamic aspects of airfoils, such as stall, angle of attack of maximum lift, angle of maximum efficiency, aerodynamic moment coefficient and aerodynamic center position. These imperfections in the leading edge may appear in some manufacturing processes of certain aerodynamic elements, such as unmanned aircraft wings or wind turbine blades. The study has focused on the analysis of the behavior at low Reynolds numbers due to recent use of low Reynolds numbers airfoils in a wide range of applications, from unmanned aerial vehicles (UAV) to low power wind turbine blades, or even due to their potential use in aircraft designed to fly in low density atmospheres as the one existing in Mars. This phenomenon has not been deeply analyzed in the literature, although several authors have discussed on airfoils at low Reynolds number, with leading edge protuberances or airfoils with ice accretions. Various types of airfoils have been analyzed, laminar and non-laminar, symmetric and curved airfoils, and airfoils with different thickness, in order to compare the degree of influence of the phenomenon studied on each airfoil type and thus, to estimate the degree of sensitivity to the anomaly geometry. The study was carried out experimentally using a test chamber designed specifically for this purpose, as well as an electronic balance to measure the forces and moments on the airfoil, and a pressure scanner to measure distribution of pressures in certain cases. The main purpose of this research is to establish a criteria for quantifying the influence that a slight displacement of half aerofoil with respect to the other has in the degradation of aerodynamics characteristics, aiming at establishing the acceptance limits for these pieces when they are manufactured, according to the type of airfoil used. Based on the results obtained from the analysis of the cases under study it can be concluded that displacements, within the range of study, decreases maximum aerodynamic lift, but the aerodynamic drag increases, and consequently there is a reduction of aerodynamic efficiency. However, in some cases, for small defects opposite effect occurs. The maximum lift increases significantly with little loss of maximum aerodynamic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia las similitudes y diferencias entre los flujos turbulentos de pared de tipo externo e interno, en régimen incompresible, y a números de Reynolds moderada¬mente altos. Para ello consideramos tanto simulaciones numéricas como experimentos de capas límites con gradiente de presiones nulo y de flujos de canal, ambos a números de Reynolds en el rango δ+ ~ 500 - 2000. Estos flujos de cortadura son objeto de numerosas investigaciones debido a la gran importancia que tienen tanto a nivel tecnológico como a nivel de física fundamental. No obstante, todavía existen muchos interrogantes sobre aspectos básicos tales como la universalidad de los perfiles medios y de fluctuación de las velocidades o de la presión, tanto en la zona cercana a la pared como en la zona logarítmica, el escalado y el efecto del número de Reynolds, o las diferencias entre los flujos internos y externos en la zona exterior. En éste estudio hemos utilizado simulaciones numéricas ya existentes de canales y capas límites a números de Reynolds δ+ ~ 2000 y δ+ ~ 700, respectivamente. Para poder comparar ambos flujos a igual número de Reynolds hemos realizado una nueva simulación directa de capa límite en el rango δ+ ~ 1000-2000. Los resultados de la misma son presentados y analizados en detalle. Los datos sin postprocesar y las estadísticas ya postprocesadas están públicamente disponibles en nuestro sitio web.162 El análisis de las estadísticas usando un único punto confirma la existencia de perfiles logarítmicos para las fluctuaciones de la velocidad transversal w'2+ y de la presión p'2+ en ambos tipos de flujos, pero no para la velocidad normal v'2+ o la velocidad longitudinal u'2+. Para aceptar o rechazar la existencia de un rango logarítmico en u'2+ se requieren números de Reynolds más altos que los considerados en éste trabajo. Una de las conse¬cuencias más importantes de poseer tales perfiles es que el valor máximo de la intensidad, que se alcanza cerca de la pared, depende explícitamente del número de Reynolds. Esto ha sido confirmado tras analizar un gran número de datos experimentales y numéricos, cor¬roborando que el máximo de u'2+, p/2+, y w'2+ aumenta proporcionalmente con el log(δ+). Por otro lado, éste máximo es más intenso en los flujos externos que en los internos. La máxima diferencia ocurre en torno a y/δ ~ 0.3-0.5, siendo esta altura prácticamente independiente del número de Reynolds considerado. Estas diferencias se originan como consecuencia del carácter intermitente de las capas límites, que es inexistente en los flujos internos. La estructura de las fluctuaciones de velocidad y de presión, junto con la de los esfuer¬zos de Reynolds, se han investigado por medio de correlaciones espaciales tridimensionales considerando dos puntos de medida. Hemos obtenido que el tamaño de las mismas es gen¬eralmente mayor en canales que en capas límites, especialmente en el caso de la correlación longitudinal Cuu en la dirección del flujo. Para esta correlación se demuestra que las es¬tructuras débilmente correladas presentan longitudes de hasta 0(75), en el caso de capas límites, y de hasta 0(185) en el caso de canales. Estas longitudes se obtienen respecti-vamente en la zona logarítmica y en la zona exterior. Las longitudes correspondientes en la dirección transversal son significativamente menores en ambos flujos, 0(5 — 25). La organización espacial de las correlaciones es compatible con la de una pareja de rollos casi paralelos con dimensiones que escalan en unidades exteriores. Esta organización se mantiene al menos hasta y ~ 0.65, altura a la cual las capas límites comienzan a organi¬zarse en rollos transversales. Este comportamiento es sin embargo más débil en canales, pudiéndose observar parcialmente a partir de y ~ 0.85. Para estudiar si estas estructuras están onduladas a lo largo de la dirección transver¬sal, hemos calculado las correlaciones condicionadas a eventos intensos de la velocidad transversal w'. Estas correlaciones revelan que la ondulación de la velocidad longitudinal aumenta conforme nos alejamos de la pared, sugiriendo que las estructuras están más alineadas en la zona cercana a la pared que en la zona lejana a ella. El por qué de esta ondulación se encuentra posiblemente en la configuración a lo largo de diagonales que presenta w'. Estas estructuras no sólo están onduladas, sino que también están inclinadas respecto a la pared con ángulos que dependen de la variable considerada, de la altura, y de el contorno de correlación seleccionado. Por encima de la zona tampón e independien¬temente del número de Reynolds y tipo de flujo, Cuu presenta una inclinación máxima de unos 10°, las correlaciones Cvv y Cm son esencialmente verticales, y Cww está inclinada a unos 35°. Summary This thesis studies the similitudes and differences between external and internal in¬compressible wall-bounded turbulent flows at moderately-high Reynolds numbers. We consider numerical and experimental zero-pressure-gradient boundary layers and chan¬nels in the range of δ+ ~ 500 — 2000. These shear flows are subjects of intensive research because of their technological importance and fundamental physical interest. However, there are still open questions regarding basic aspects such as the universality of the mean and fluctuating velocity and pressure profiles at the near-wall and logarithmic regions, their scaling and the effect of the Reynolds numbers, or the differences between internal and external flows at the outer layer, to name but a few. For this study, we made use of available direct numerical simulations of channel and boundary layers reaching δ+ ~ 2000 and δ+ ~ 700, respectively. To fill the gap in the Reynolds number, a new boundary layer simulation in the range δ+ ~ 1000-2000 is presented and discussed. The original raw data and the post-processed statistics are publicly available on our website.162 The analysis of the one-point statistic confirms the existence of logarithmic profiles for the spanwise w'2+ and pressure p'2+ fluctuations for both type of flows, but not for the wall-normal v'2+ or the streamwise u'2+ velocities. To accept or reject the existence of a logarithmic range in u'2+ requires higher Reynolds numbers than the ones considered in this work. An important consequence of having such profiles is that the maximum value of the intensities, reached near the wall, depends on the Reynolds number. This was confirmed after surveying a wide number of experimental and numerical datasets, corrob¬orating that the maximum of ul2+, p'2+, and w'2+ increases proportionally to log(δ+). On the other hand, that maximum is more intense in external flows than in internal ones, differing the most around y/δ ~ 0.3-0.5, and essentially independent of the Reynolds number. We discuss that those differences are originated as a consequence of the inter¬mittent character of boundary layers that is absent in internal flows. The structure of the velocity and pressure fluctuations, together with those of the Reynolds shear stress, were investigated using three-dimensional two-point spatial correlations. We find that the correlations extend over longer distances in channels than in boundary layers, especially in the case of the streamwise correlation Cuu in the flow direc-tion. For weakly correlated structures, the maximum streamwise length of Cuu is O(78) for boundary layers and O(188) for channels, attained at the logarithmic and outer regions respectively. The corresponding lengths for the transverse velocities and for the pressure are shorter, 0(8 — 28), and of the same order for both flows. The spatial organization of the velocity correlations is shown to be consistent with a pair of quasi-streamwise rollers that scales in outer units. That organization is observed until y ~ 0.68, from which boundary layers start to organize into spanwise rollers. This effect is weaker in channels, and it appears at y ~ 0.88. We present correlations conditioned to intense events of the transversal velocity, w', to study if these structures meander along the spanwise direction. The results indicate that the streamwise velocity streaks increase their meandering proportionally to the distance to the wall, suggesting that the structures are more aligned close to the wall than far from it. The reason behind this meandering is probably due to the characteristic organization along diagonals of w'. These structures not only meander along the spanwise direction, but they are also inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. Above the buffer layer and independent of the Reynolds numbers and type of flow, the maximum inclination of Cuu is about 10°, Cvv and Cpp are roughly vertical, and Cww is inclined by 35°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been made on the influence of the leading edge imperfections in airfoils used in different devices relating their aerodynamic performances. Wind tunnel tests have been made at different Reynolds numbers and angle of attacks in order to show this effect. Later, a quantitative study of the aerodynamic properties has been made based on the different leading edge imperfections and their size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: Descripción: retrato de niña de cuerpo entero y de frente en un bosque. Con la mano derecha atusa la cabeza de un perro y con la izqda. se recoge el faldón del vestido

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent boundary layers over a flat plate has been developed. Its purpose is to simulate a wide range of Reynolds numbers from Reθ = 300 to 6800 while showing a linear weak scaling up to 32,768 cores in the BG/P architecture. Special attention has been paid to the generation of proper inflow boundary conditions. The results are in good agreement with existing numerical and experimental data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El programa Europeo HORIZON2020 en Futuras Ciudades Inteligentes establece como objetivo que el 20% de la energía eléctrica sea generada a partir de fuentes renovables. Este objetivo implica la necesidad de potenciar la generación de energía eólica en todos los ámbitos. La energía eólica reduce drásticamente las emisiones de gases de efecto invernadero y evita los riesgos geo-políticos asociados al suministro e infraestructuras energéticas, así como la dependencia energética de otras regiones. Además, la generación de energía distribuida (generación en el punto de consumo) presenta significativas ventajas en términos de elevada eficiencia energética y estimulación de la economía. El sector de la edificación representa el 40% del consumo energético total de la Unión Europea. La reducción del consumo energético en este área es, por tanto, una prioridad de acuerdo con los objetivos "20-20-20" en eficiencia energética. La Directiva 2010/31/EU del Parlamento Europeo y del Consejo de 19 de mayo de 2010 sobre el comportamiento energético de edificaciones contempla la instalación de sistemas de suministro energético a partir de fuentes renovables en las edificaciones de nuevo diseño. Actualmente existe una escasez de conocimiento científico y tecnológico acerca de la geometría óptima de las edificaciones para la explotación de la energía eólica en entornos urbanos. El campo tecnológico de estudio de la presente Tesis Doctoral es la generación de energía eólica en entornos urbanos. Específicamente, la optimization de la geometría de las cubiertas de edificaciones desde el punto de vista de la explotación del recurso energético eólico. Debido a que el flujo del viento alrededor de las edificaciones es exhaustivamente investigado en esta Tesis empleando herramientas de simulación numérica, la mecánica de fluidos computacional (CFD en inglés) y la aerodinámica de edificaciones son los campos científicos de estudio. El objetivo central de esta Tesis Doctoral es obtener una geometría de altas prestaciones (u óptima) para la explotación de la energía eólica en cubiertas de edificaciones de gran altura. Este objetivo es alcanzado mediante un análisis exhaustivo de la influencia de la forma de la cubierta del edificio en el flujo del viento desde el punto de vista de la explotación energética del recurso eólico empleando herramientas de simulación numérica (CFD). Adicionalmente, la geometría de la edificación convencional (edificio prismático) es estudiada, y el posicionamiento adecuado para los diferentes tipos de aerogeneradores es propuesto. La compatibilidad entre el aprovechamiento de las energías solar fotovoltaica y eólica también es analizado en este tipo de edificaciones. La investigación prosigue con la optimización de la geometría de la cubierta. La metodología con la que se obtiene la geometría óptima consta de las siguientes etapas: - Verificación de los resultados de las geometrías previamente estudiadas en la literatura. Las geometrías básicas que se someten a examen son: cubierta plana, a dos aguas, inclinada, abovedada y esférica. - Análisis de la influencia de la forma de las aristas de la cubierta sobre el flujo del viento. Esta tarea se lleva a cabo mediante la comparación de los resultados obtenidos para la arista convencional (esquina sencilla) con un parapeto, un voladizo y una esquina curva. - Análisis del acoplamiento entre la cubierta y los cerramientos verticales (paredes) mediante la comparación entre diferentes variaciones de una cubierta esférica en una edificación de gran altura: cubierta esférica estudiada en la literatura, cubierta esférica integrada geométricamente con las paredes (planta cuadrada en el suelo) y una cubierta esférica acoplada a una pared cilindrica. El comportamiento del flujo sobre la cubierta es estudiado también considerando la posibilidad de la variación en la dirección del viento incidente. - Análisis del efecto de las proporciones geométricas del edificio sobre el flujo en la cubierta. - Análisis del efecto de la presencia de edificaciones circundantes sobre el flujo del viento en la cubierta del edificio objetivo. Las contribuciones de la presente Tesis Doctoral pueden resumirse en: - Se demuestra que los modelos de turbulencia RANS obtienen mejores resultados para la simulación del viento alrededor de edificaciones empleando los coeficientes propuestos por Crespo y los propuestos por Bechmann y Sórensen que empleando los coeficientes estándar. - Se demuestra que la estimación de la energía cinética turbulenta del flujo empleando modelos de turbulencia RANS puede ser validada manteniendo el enfoque en la cubierta de la edificación. - Se presenta una nueva modificación del modelo de turbulencia Durbin k — e que reproduce mejor la distancia de recirculación del flujo de acuerdo con los resultados experimentales. - Se demuestra una relación lineal entre la distancia de recirculación en una cubierta plana y el factor constante involucrado en el cálculo de la escala de tiempo de la velocidad turbulenta. Este resultado puede ser empleado por la comunidad científica para la mejora del modelado de la turbulencia en diversas herramientas computacionales (OpenFOAM, Fluent, CFX, etc.). - La compatibilidad entre las energías solar fotovoltaica y eólica en cubiertas de edificaciones es analizada. Se demuestra que la presencia de los módulos solares provoca un descenso en la intensidad de turbulencia. - Se demuestran conflictos en el cambio de escala entre simulaciones de edificaciones a escala real y simulaciones de modelos a escala reducida (túnel de viento). Se demuestra que para respetar las limitaciones de similitud (número de Reynolds) son necesarias mediciones en edificaciones a escala real o experimentos en túneles de viento empleando agua como fluido, especialmente cuando se trata con geometrías complejas, como es el caso de los módulos solares. - Se determina el posicionamiento más adecuado para los diferentes tipos de aerogeneradores tomando en consideración la velocidad e intensidad de turbulencia del flujo. El posicionamiento de aerogeneradores es investigado en las geometrías de cubierta más habituales (plana, a dos aguas, inclinada, abovedada y esférica). - Las formas de aristas más habituales (esquina, parapeto, voladizo y curva) son analizadas, así como su efecto sobre el flujo del viento en la cubierta de un edificio de gran altura desde el punto de vista del aprovechamiento eólico. - Se propone una geometría óptima (o de altas prestaciones) para el aprovechamiento de la energía eólica urbana. Esta optimización incluye: verificación de las geometrías estudiadas en el estado del arte, análisis de la influencia de las aristas de la cubierta en el flujo del viento, estudio del acoplamiento entre la cubierta y las paredes, análisis de sensibilidad del grosor de la cubierta, exploración de la influencia de las proporciones geométricas de la cubierta y el edificio, e investigación del efecto de las edificaciones circundantes (considerando diferentes alturas de los alrededores) sobre el flujo del viento en la cubierta del edificio objetivo. Las investigaciones comprenden el análisis de la velocidad, la energía cinética turbulenta y la intensidad de turbulencia en todos los casos. ABSTRACT The HORIZON2020 European program in Future Smart Cities aims to have 20% of electricity produced by renewable sources. This goal implies the necessity to enhance the wind energy generation, both with large and small wind turbines. Wind energy drastically reduces carbon emissions and avoids geo-political risks associated with supply and infrastructure constraints, as well as energy dependence from other regions. Additionally, distributed energy generation (generation at the consumption site) offers significant benefits in terms of high energy efficiency and stimulation of the economy. The buildings sector represents 40% of the European Union total energy consumption. Reducing energy consumption in this area is therefore a priority under the "20-20-20" objectives on energy efficiency. The Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings aims to consider the installation of renewable energy supply systems in new designed buildings. Nowadays, there is a lack of knowledge about the optimum building shape for urban wind energy exploitation. The technological field of study of the present Thesis is the wind energy generation in urban environments. Specifically, the improvement of the building-roof shape with a focus on the wind energy resource exploitation. Since the wind flow around buildings is exhaustively investigated in this Thesis using numerical simulation tools, both computational fluid dynamics (CFD) and building aerodynamics are the scientific fields of study. The main objective of this Thesis is to obtain an improved (or optimum) shape of a high-rise building for the wind energy exploitation on the roof. To achieve this objective, an analysis of the influence of the building shape on the behaviour of the wind flow on the roof from the point of view of the wind energy exploitation is carried out using numerical simulation tools (CFD). Additionally, the conventional building shape (prismatic) is analysed, and the adequate positions for different kinds of wind turbines are proposed. The compatibility of both photovoltaic-solar and wind energies is also analysed for this kind of buildings. The investigation continues with the buildingroof optimization. The methodology for obtaining the optimum high-rise building roof shape involves the following stages: - Verification of the results of previous building-roof shapes studied in the literature. The basic shapes that are compared are: flat, pitched, shed, vaulted and spheric. - Analysis of the influence of the roof-edge shape on the wind flow. This task is carried out by comparing the results obtained for the conventional edge shape (simple corner) with a railing, a cantilever and a curved edge. - Analysis of the roof-wall coupling by testing different variations of a spherical roof on a high-rise building: spherical roof studied in the litera ture, spherical roof geometrically integrated with the walls (squared-plant) and spherical roof with a cylindrical wall. The flow behaviour on the roof according to the variation of the incident wind direction is commented. - Analysis of the effect of the building aspect ratio on the flow. - Analysis of the surrounding buildings effect on the wind flow on the target building roof. The contributions of the present Thesis can be summarized as follows: - It is demonstrated that RANS turbulence models obtain better results for the wind flow around buildings using the coefficients proposed by Crespo and those proposed by Bechmann and S0rensen than by using the standard ones. - It is demonstrated that RANS turbulence models can be validated for turbulent kinetic energy focusing on building roofs. - A new modification of the Durbin k — e turbulence model is proposed in order to obtain a better agreement of the recirculation distance between CFD simulations and experimental results. - A linear relationship between the recirculation distance on a flat roof and the constant factor involved in the calculation of the turbulence velocity time scale is demonstrated. This discovery can be used by the research community in order to improve the turbulence modeling in different solvers (OpenFOAM, Fluent, CFX, etc.). - The compatibility of both photovoltaic-solar and wind energies on building roofs is demonstrated. A decrease of turbulence intensity due to the presence of the solar panels is demonstrated. - Scaling issues are demonstrated between full-scale buildings and windtunnel reduced-scale models. The necessity of respecting the similitude constraints is demonstrated. Either full-scale measurements or wind-tunnel experiments using water as a medium are needed in order to accurately reproduce the wind flow around buildings, specially when dealing with complex shapes (as solar panels, etc.). - The most adequate position (most adequate roof region) for the different kinds of wind turbines is highlighted attending to both velocity and turbulence intensity. The wind turbine positioning was investigated for the most habitual kind of building-roof shapes (flat, pitched, shed, vaulted and spherical). - The most habitual roof-edge shapes (simple edge, railing, cantilever and curved) were investigated, and their effect on the wind flow on a highrise building roof were analysed from the point of view of the wind energy exploitation. - An optimum building-roof shape is proposed for the urban wind energy exploitation. Such optimization includes: state-of-the-art roof shapes test, analysis of the influence of the roof-edge shape on the wind flow, study of the roof-wall coupling, sensitivity analysis of the roof width, exploration of the aspect ratio of the building-roof shape and investigation of the effect of the neighbouring buildings (considering different surrounding heights) on the wind now on the target building roof. The investigations comprise analysis of velocity, turbulent kinetic energy and turbulence intensity for all the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot-Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna´s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.