842 resultados para Quality Model
Resumo:
An economic air pollution control model, which determines the least cost of reaching various air quality levels, is formulated. The model takes the form of a general, nonlinear, mathematical programming problem. Primary contaminant emission levels are the independent variables. The objective function is the cost of attaining various emission levels and is to be minimized subject to constraints that given air quality levels be attained.
The model is applied to a simplified statement of the photochemical smog problem in Los Angeles County in 1975 with emissions specified by a two-dimensional vector, total reactive hydrocarbon, (RHC), and nitrogen oxide, (NOx), emissions. Air quality, also two-dimensional, is measured by the expected number of days per year that nitrogen dioxide, (NO2), and mid-day ozone, (O3), exceed standards in Central Los Angeles.
The minimum cost of reaching various emission levels is found by a linear programming model. The base or "uncontrolled" emission levels are those that will exist in 1975 with the present new car control program and with the degree of stationary source control existing in 1971. Controls, basically "add-on devices", are considered here for used cars, aircraft, and existing stationary sources. It is found that with these added controls, Los Angeles County emission levels [(1300 tons/day RHC, 1000 tons /day NOx) in 1969] and [(670 tons/day RHC, 790 tons/day NOx) at the base 1975 level], can be reduced to 260 tons/day RHC (minimum RHC program) and 460 tons/day NOx (minimum NOx program).
"Phenomenological" or statistical air quality models provide the relationship between air quality and emissions. These models estimate the relationship by using atmospheric monitoring data taken at one (yearly) emission level and by using certain simple physical assumptions, (e. g., that emissions are reduced proportionately at all points in space and time). For NO2, (concentrations assumed proportional to NOx emissions), it is found that standard violations in Central Los Angeles, (55 in 1969), can be reduced to 25, 5, and 0 days per year by controlling emissions to 800, 550, and 300 tons /day, respectively. A probabilistic model reveals that RHC control is much more effective than NOx control in reducing Central Los Angeles ozone. The 150 days per year ozone violations in 1969 can be reduced to 75, 30, 10, and 0 days per year by abating RHC emissions to 700, 450, 300, and 150 tons/day, respectively, (at the 1969 NOx emission level).
The control cost-emission level and air quality-emission level relationships are combined in a graphical solution of the complete model to find the cost of various air quality levels. Best possible air quality levels with the controls considered here are 8 O3 and 10 NO2 violations per year (minimum ozone program) or 25 O3 and 3 NO2 violations per year (minimum NO2 program) with an annualized cost of $230,000,000 (above the estimated $150,000,000 per year for the new car control program for Los Angeles County motor vehicles in 1975).
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.
Resumo:
Based on the ripple transfers of electric-field amplitude and phase in frequency tripling, simple formulas are derived for the harmonic laser's beam-quality factor M-3omega(2), with an arbitrary fundamental incidence to ideal nonlinear crystals. Whereas the harmonic beam's quality is generally degraded, the beam's divergence is similar to that of the fundamental after nonlinear frequency conversion. For practical crystals with periodic surface ripples that are caused by their machining, a multiorder diffractive model is presented with which the focusing properties of harmonic beams can be studied. Predictions of the theories are shown to be in excellent agreement with full numerical simulations. (C) 2002 Optical Society of America.
Resumo:
Feature-based vocoders, e.g., STRAIGHT, offer a way to manipulate the perceived characteristics of the speech signal in speech transformation and synthesis. For the harmonic model, which provide excellent perceived quality, features for the amplitude parameters already exist (e.g., Line Spectral Frequencies (LSF), Mel-Frequency Cepstral Coefficients (MFCC)). However, because of the wrapping of the phase parameters, phase features are more difficult to design. To randomize the phase of the harmonic model during synthesis, a voicing feature is commonly used, which distinguishes voiced and unvoiced segments. However, voice production allows smooth transitions between voiced/unvoiced states which makes voicing segmentation sometimes tricky to estimate. In this article, two-phase features are suggested to represent the phase of the harmonic model in a uniform way, without voicing decision. The synthesis quality of the resulting vocoder has been evaluated, using subjective listening tests, in the context of resynthesis, pitch scaling, and Hidden Markov Model (HMM)-based synthesis. The experiments show that the suggested signal model is comparable to STRAIGHT or even better in some scenarios. They also reveal some limitations of the harmonic framework itself in the case of high fundamental frequencies.
Resumo:
We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.
Resumo:
Fishery managers are mandated to understand the effects that environmental damage, fishery regulations, and habitat improvement projects have on the net benefits that recreational anglers derive from their sport. Since 1994, the National Marine Fisheries Service (NMFS) has worked to develop a consistent method for estimating net benefits through site choice models of recreational trip demand. In estimating net benefits with these models, there is a tradeoff between computational efficiency and angler behavior in reality. This article examines this tradeoff by considering the sensitivity of angler-welfare estimates for an increase in striped bass (Morone saxatalis) angling quality across choice sets with five travel distance cutoffs and compares those estimates to a model with an unrestricted choice set. This article shows that 95% confidence intervals for welfare estimates of an increase in the striped bass catch and keep rate overlap for all distance-based choice sets specified here.
Resumo:
Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model. © 2005 IEEE.
Resumo:
Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.
Resumo:
This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The study was conducted in collaboration with the ECFC project of the FAO (BGD/97/017) in Cox's Bazar to develop a low cost solar tunnel dryer for the production of high quality marine dried fish. The study areas were Kutubdiapara, Maheshkhali and Shahparirdip under Cox's Bazar district. Three different models of low cost solar dryer were constructed with locally available materials such as bamboo, wood, bamboo mat, hemp, canvas, wire, nails, rope, tin, polythene and net. Size of the dryers were: 20x4x3 ft ; 30x3x3 ft and 65x3x3 ft with the costs of Tk. 3060, 3530, 9600 for dryer 1, 2 and 3, respectively having different models. The drying capacities were 50, 150, 500 kg for dryer 1, 2 and 3 respectively. The average temperature range inside the dryers were 29-43°C, 34-51°C and 37-57°C for dryer 1, 2 and 3 respectively as recorded at 8:30h to 16:30h. The relative humidity were in the ranges of 22-42%, 27-39% and 24-41 % in dryer 1, 2 and 3 respectively. The fish samples used were Bombay duck, Silver Jew fish and Ribbon fish. The total drying time was in the range of 30-42, 28-38 and 24-34 hours to reach the moisture content of 12.3-14.5, 11.8-14.3, and 11.6-14.1% in dryer 1, 2 and 3 respectively. Among these three fish samples the drying was faster in Silver Jew fish followed by Bombay duck and Ribbon fish in all the three dryer.
Resumo:
Quality control is considered from the simulator's perspective through comparative simulation of an ultra energy-efficient building with EE4-DOE2.1E and EnergyPlus. The University of Calgary's Leadership in Energy and Environmental Design Platinum Child Development Centre, with a 66% certified energy cost reduction rating, was the case study building. A Natural Resources Canada incentive program required use of EE4 interface with DOE2.1E simulation engine for energy modelling. As DOE2.1E lacks specific features to simulate advanced systems such as radiant cooling in the CDC, an EnergyPlus model was developed to further evaluate these features. The EE4-DOE2.1E model was used for quality control during development of the base EnergyPlus model and simulation results were compared. Advanced energy systems then added to the EnergyPlus model generated small difference in estimated total annual energy use. The comparative simulation process helped identify the main input errors in the draft EnergyPlus model. The comparative use of less complex simulation programs is recommended for quality control when producing more complex models. © 2009 International Building Performance Simulation Association (IBPSA).
Resumo:
Provisioning along pedestrian trails by tourists much increased the nutrient quality and patchiness of food (NqPF)for Tibetan macaques (Macaca thibetana) at Mt Emei in spring and summer. In the habitat at a temperate-subtropical transition zone, the mncaque's NqPF could be ordered in a decreasing rank from spring summer to autumn to winter With the aid of a radio-tracking system, I collected ranging data on a multigroup community in three 70-day periods representing the different seasons in 1991-92, Rank-order correlation on the data show that with the decline of NqPF; the groups tended to increase days away from the trail, their effective range size (ERS) their exclusive area (EA) and the number of days spent in the EA, and reduced their group/community density and the ratio of the overlapped range to the seasonal range (ROR). In icy/snowy winter; the macaques searched for mature leaves slowly and carefully in the largest seasonal range with a considerable portion that was nor used in other seasons. Of the responses, the ROR decreased with the reduction in group/community density; and the ERS was the function of both group size (+) and intergroup rank (-) when favorite food was highly clumped. All above responses were clearly bound to maximize foraging effectiveness and minimize energy expenditure, and their integration in term of changes in time and space leads to better understanding macaque ecological adaptability. Based on this study and previous work on behavioral and physiological factors, I suggest a unifying theory of intergroup interactions. Ir! addition, as the rate of behavioral interactions,was also related to the group density, I Waser's (1976) gas model probably applies to behavioral, as well as spatial, data on intergroup interactions.
Resumo:
Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.
Resumo:
Several agencies in the United Kingdom have interest in the water quality of old navigational canals that have fallen into disuse after the decline of commercial canal transportation. The interested agencies desired a model to predict the water quantity and quality of inland navigational canals in order to evaluate management options to address the issues in the natural streams to which they discharge. Inland navigational canals have unique drivers of their hydrology and water quality compared to either natural streams, irrigation canals, or larger navigational canals connected to seas or oceans. Water in an inland canal is typically sourced from a reservoir and artificially pumped to a summit reach; its movement downhill is controlled by the activity of boats and overflow weirs. Stagnant impoundments between locks, which might normally be expected to result in a decrease in the concentration of sediment-associated pollutants, actually have surprisingly high levels of sediment due to boat traffic. Algal growth in the stagnant reach can be high. This paper describes a canal model developed to simulate hydrology and water quality in inland navigational canals. This model was successfully applied to the Kennet and Avon Canal to predict hydrology, sediment generation and transport, and algal growth and transport. The model is responsive to external influences such as sunlight, temperature, nutrient concentrations, boat traffic, and runoff from the contributing catchment area.
Resumo:
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.