553 resultados para Pyruvate formiate lyase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Botulinum toxin (BTX) A and B are commonly used for aesthetic indications and in neuromuscular disorders. New concepts seek to prove efficacy of BTX for critical tissue perfusion. Our aim was to evaluate BTX A and B in a mouse model of critical flap ischemia for preoperative and intraoperative application. METHODS BTX A and B were applied on the vascular pedicle of an axial pattern flap in mice preoperatively or intraoperatively. Blood flow, tissue oxygenation, tissue metabolism, flap necrosis rate, apoptosis assay, and RhoA and eNOS expression were endpoints. RESULTS Blood-flow measurements 1 d after the flap operation revealed a significant reduction to 53% in the control group, while flow was maintained or increased in all BTX groups (103%-129%). Over 5 d all BTX groups showed significant increase in blood flow to 166-187% (P < 0.01). Microdialysis revealed an increase of glucose and reduced lactate/pyruvate ratio and glycerol levels in the flap tissue of all BTX groups. This resulted in significantly improved tissue survival in all BTX groups compared with the control group (62% ± 10%; all P < 0.01): BTX A preconditioning (84% ± 5%), BTX A application intraoperatively (88% ± 4%), BTX B preconditioning (91% ± 4%), and intraoperative BTX B treatment (92% ± 5%). This was confirmed by TUNEL assay. Immunofluorescence demonstrated RhoA and eNOS expression in BTX groups. All BTX applications were similarly effective, despite pharmacologic dissimilarities and different timing. CONCLUSIONS In conclusion, we were able to show on a vascular, tissue, cell, and molecular level that BTX injection to the feeding arteries supports flap survival through ameliorated blood flow and oxygen delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serial quantitative and correlative studies of experimental spinal cord injury (SCI) in rats were conducted using three-dimensional magnetic resonance imaging (MRI). Correlative measures included morphological histopathology, neurobehavioral measures of functional deficit, and biochemical assays for N-acetyl-aspartate (NAA), lactate, pyruvate, and ATP. A spinal cord injury device was characterized and provided a reproducible injury severity. Injuries were moderate and consistent to within $\pm$20% (standard deviation). For MRI, a three-dimensional implementation of the single spin-echo FATE (Fast optimum angle, short TE) pulse sequence was used for rapid acquisition, with a 128 x 128 x 32 (x,y,z) matrix size and a 0.21 x 0.21 x 1.5 mm resolution. These serial studies revealed a bimodal characteristic in the evolution in MRI pathology with time. Early and late phases of SCI pathology were clearly visualized in $T\sb2$-weighted MRI, and these corresponded to specific histopathological changes in the spinal cord. Centralized hypointense MRI regions correlated with evidence of hemorrhagic and necrotic tissue, while surrounding hyperintense regions represented edema or myelomalacia. Unexpectedly, $T\sb2$-weighted MRI pathology contrast at 24 hours after injury appeared to subside before peaking at 72 hours after injury. This change is likely attributable to ongoing secondary injury processes, which may alter local $T\sb2$ values or reduce the natural anisotropy of the spinal cord. MRI, functional, and histological measures all indicated that 72 hours after injury was the temporal maximum for quantitative measures of spinal cord pathology. Thereafter, significant improvement was seen only in neurobehavioral scores. Significant correlations were found between quantitated MRI pathology and histopathology. Also, NAA and lactate levels correlated with behavioral measures of the level of function deficit. Asymmetric (rostral/caudal) changes in NAA and lactate due to injury indicate that rostral and caudal segments from the injury site are affected differently by the injury. These studies indicate that volumetric quantitation of MRI pathology from $T\sb2$-weighted images may play an important role in early prediction of neurologic deficit and spinal cord pathology. The loss of $T\sb2$ contrast at 24 hours suggests MR may be able to detect certain delayed mechanisms of secondary injury which are not resolved by histopathology or other radiological modalities. Furthermore, in vivo proton magnetic resonance spectroscopy (MRS) studies of SCI may provide a valuable addition source of information about changes in regional spinal cord lactate and NAA levels, which are indicative of local metabolic and pathological changes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al ., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of C-14-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urea cycle disorders (UCD) are due to defects of any of its six enzymes or two transporters. The definitive diagnosis of defects of the three mitochondrial enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase I (CPS1) and ornithine transcarbamylase (OTC) depends on either molecular mutation analysis or measurement of enzyme activity, whereas the diagnosis of deficiencies of the three cytosolic enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and arginase I (ARG1) is usually straightforward, based on marker metabolites. Enzyme assays for all UCD have been used since their first description, for disease confirmation and in some instances even for prenatal diagnosis. The genetic bases of the UCD have only been unraveled from the 1980s; the last gene cloned being the NAGS gene in 2002. In this review we discuss the enzymatic assays for all urea cycle enzymes from a historical perspective, their potential and drawbacks, and the current role of enzymatic analysis in UCD in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of androgen production is poorly understood. Adrenarche is the physiologic event in mid-childhood when the adrenal zona reticularis starts to produce androgens through specific expression of genes for enzymes and cofactors necessary for androgen synthesis. Similarly, expression and activities of same genes and products are deregulated in hyperandrogenic disorders such as the polycystic ovary syndrome (PCOS). Numerous studies revealed involvement of several signaling pathways stimulated through G-protein coupled receptors or growth factors transmitting their effects through cAMP- or non-cAMP-dependent signaling. Overall a complex network regulates androgen synthesis targeting involved genes and proteins at the transcriptional and post-translational levels. Newest players in the field are the DENND1A gene identified in PCOS patients and the MAPK14 which is the kinase phosphorylating CYP17 for enhanced lyase activity. Next generation sequencing studies of PCOS patients and transcriptome analysis of androgen producing tissues or cell models provide newer tools to identify modulators of androgen synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Genome-wide association studies have linked CYP17A1 coding for the steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to blood pressure (BP). We hypothesized that the genetic signal may translate into a correlation of ambulatory BP (ABP) with apparent CYP17A1 activity in a family-based population study and estimated the heritability of CYP17A1 activity. METHODS In the Swiss Kidney Project on Genes in Hypertension, day and night urinary excretions of steroid hormone metabolites were measured in 518 participants (220 men, 298 women), randomly selected from the general population. CYP17A1 activity was assessed by 2 ratios of urinary steroid metabolites: one estimating the combined 17α-hydroxylase/17,20-lyase activity (ratio 1) and the other predominantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used to investigate the association of ABP with log-transformed CYP17A1 activities exploring effect modification by urinary sodium excretion. RESULTS Daytime ABP was positively associated with ratio 1 under conditions of high, but not low urinary sodium excretion (P interaction <0.05). Ratio 2 was not associated with ABP. Heritability estimates (SE) for day and night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activities, assessed with ratio 1, were lower in older participants. CONCLUSIONS Low apparent CYP17A1 activity (assessed with ratio 1) is associated with elevated daytime ABP when salt intake is high. CYP17A1 activity is heritable and diminished in the elderly. These observations highlight the modifying effect of salt intake on the association of CYP17A1 with BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3′-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coding sequence of the wild-type, cys-sensitive, cysE gene from Escherichia coli, which encodes an enzyme of the cysteine biosynthetic pathway, namely serine acetyltransferase (SAT, EC 2.3.1.30), was introduced into the genome of potato plants under the control of the cauliflower mosaic virus 35S promoter. In order to target the protein into the chloroplast, cysE was translationally fused to the 5′-signal sequence of rbcS from Arabidopsis thaliana. Transgenic plants showed a high accumulation of the cysE mRNA. The chloroplastic localisation of the E. coli SAT protein was demonstrated by determination of enzymatic activities in enriched organelle fractions. Crude leaf extracts of these plants exhibited up to 20-fold higher SAT activity than those prepared from wild-type plants. The transgenic potato plants expressing the E. coli gene showed not only increased levels of enzyme activity but also exhibited elevated levels of cysteine and glutathione in leaves. Both were up to twofold higher than in control plants. However, the thiol content in tubers of transgenic lines was unaffected. The alterations observed in leaf tissue had no effect on the expression of O-acetylserine(thiol)-lyase, the enzyme which converts O-acetylserine, the product of SAT, to cysteine. Only a minor effect on its enzymatic activity was observed. In conclusion, the results presented here demonstrate the importance of SAT in plant cysteine biosynthesis and show that production of cysteine and related sulfur-containing compounds can be enhanced by metabolic engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.