963 resultados para Pulses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical limiting and thermo-optic properties of C60 in toluene are studied using 532 nm, 9 ns pulses from a frequency-doubled Nd:YAG laser. Optical limiting studies in these fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting properties in these molecules. Thermal lensing measurements are also performed in fullerene solutions. The quadratic dependence of thermal lens signal on incident energy confirms that enhanced optical absorption by the sample via excited triplet state absorption may play a leading role in the limiting property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laser produced plasma from the multielement solid target YBa2Cu3O7 is generated using 1.06 μm, 9 ns pulses from a Q-switched Nd:YAG laser in air at atmospheric pressure. A time resolved analysis of the profile of the 4554.03 Å resonance line emission from Ba II at various laser power densities has been carried out. It has been found that the line has a profile which is strongly self-reversed. It is also observed that at laser power densities equal to or exceeding 1.6×1011 W cm−2, a third peak begins to develop at the centre of the self-reversed profile and this has been interpreted as due to the anisotropic resonance scattering (fluorescence). The number densities of singly ionized barium ions evaluated from the width of the resonance line as a function of time delay with respect to the beginning of the laser pulse give typical values of the order of 1019 cm−3. The higher ion concentrations existing at smaller time delays are seen to decrease rapidly. The Ba II ions in the ground state resonantly absorb the radiation and this absorption is maximum around 120 ns after the laser pulse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis report the results obtained from the studies carried out on the laser blow off plasma (LBO) from LiF-C (Lithium Fluoride with Carbon) thin film target, which is of particular importance in Tokamak plasma diagnostics. Keeping in view of its significance, plasma generated by the irradiation of thin film target by nanosecond laser pulses from an Nd:YAG laser over the thin film target has been characterized by fast photography using intensified CCD. In comparison to other diagnostic techniques, imaging studies provide better understanding of plasma geometry (size, shape, divergence etc) and structural formations inside the plume during different stages of expansion.