916 resultados para Providence (R.I.) Westminster Congregational Church (Unitarian)
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This report presents the findings of the first phase of an investigation into the cause(s) of taints in salmonid fish in the River Ribble, commissioned by the North West Region of the Environment Agency. There have been reports of tainting in fish taken from both the estuary and the freshwater river for many years, but the contaminants involved and their source and transport pathway are unknown. Tainting by phenols has been of specific concern in the past. The work programme comprised: examination of tainting reports; collection of salmonids; their submission for taste testing; literature review; analysis of fish flesh using gas chromatography-mass spectrometry (GCMS) and analysis of river bed sediments. From enquiries, three common descriptors of the 'taint' were identified: disinfectanty; diesely; and muddy. The incidence of taints appears transient/irregular and may therefore relate to the incidence of discharges and specific threshold concentrations of pollutants. The literature review showed that a wide range of organic compounds including many industrial chemicals, and others which are naturally occurring, can taint fish flesh. Taste testing confirmed the presence of tainted salmon and trout in the Ribbie Catchment. It identified a low incidence of 'untainted' fish but demonstrated the 'taint' to be not specific to one tainting substance. Differences were found both between the species and fish from different parts of the catchment. Overall, most fish exhibited an unpleasant flavour, though this may have been influenced to some extent by the fact that most were sexually mature. The worst tainting was found in trout from the river Calder: a soapy/chemical aftertaste. An unpleasant earthy/musty flavour distinguished the salmon from the trout. Phenol was shown to have been a minor issue during the present study, whilst no hydrocarbon taints were identified. Examination of tissue from the eight salmon exhibiting the worst taints revealed the presence of aromatic hydrocarbons, but no phenolic compounds. Other notable substances present in the fish were siioxanes and benzophenone. Data from sediment analysis is presented which shows the main compounds present to be aromatic and polyaromatic hydrocarbons, that concentrations at two locations R. Darwen and R. Calder were significantly higher than at other sites, and that some phenolic compounds were detected at low levels. A paucity of fish flesh taste descriptors linked to specific compounds prevented an obvious correlation to be made between the tastes observed and the organic compounds detected. Descriptors frequently used by the taste testing panel (e.g. earthy, musty, astringency, chemical) cannot be linked to any of the compounds identified in the tissue analyses. No taste information was available from the literature on siioxanes. Aromatic hydrocarbons though present in tissue and sediments were not identified as tainting.
Resumo:
Thirty individuals of each species of Indian major carps, i.e., Catla catla, Cirrhinus cirrhosus (C. mrigala) and Labeo rohita, obtained from a nursery near Mymensingh, Bangladesh were analysed by means of allozyme electrophoresis. Twenty-one loci were studied. Several loci revealed significant deviation from Hardy-Weinberg expectations caused by deficiency of heterozygotes, indicating Wahlund effects due to problems with species identification. Moreover, bimodal distributions of individual heterozygosity within the three putative species indicated hybridisation. This was confirmed using analysis of individual admixture proportions, as individuals misidentified to species and hybrids between species were observed. Furthermore, factorial correspondence analysis to visualize genetic relationships among individuals revealed three distinct groups containing misclassified individuals, along with some intermediate individuals interpreted as hybrids. Ten per cent of all C. catla and L. rohita had been erroneously identified to species, and 40 per cent of all presumptive C. catla were hybrids between C. catla x C. cirrhosus and C. catla x L. rohita. In the case of C. cirrhosus, 37 per cent of the samples were C. cirrhosus x L. rohita hybrids. Thirty per cent of all presumptive L. rohita turned out to be hybrids between L. rohita x C. catla and L. rohita x C. cirrhosus. The high incidence of hybrids in C. catla might be responsible for slower growth of the fish in aquaculture.
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.