807 resultados para Program A : Business And Industry Development
Resumo:
In the markets-as-networks approach business networks are conceived as dynamic actor structures, giving focus to exchange relationships and actors’ capabilities to control and co-ordinate activities and resources. Researchers have shared an understanding that actors’ actions are crucial for the development of business networks and for network dynamics. However, researchers have mainly studied firms as business actors and excluded individuals, although both firms and individuals can be seen as business actors. This focus on firms as business actors has resulted in a paucity of research on human action and the exchange of intangible resources in business networks, e.g. social exchange between individuals in social networks. Consequently, the current conception of business networks fails to appreciate the richness of business actors, the human character of business action and the import of social action in business networks. The central assumption in this study is that business actors are multidimensional and that their specific constitution in any given situation is determined by human interaction in social networks. Multidimensionality is presented as a concept for exploring how business actors act in different situations and how actors simultaneously manage multiple identities: individual, organisational, professional, business and network identities. The study presents a model that describes the multidimensionality of actors in business networks and conceptualises the connection between social exchange and human action in business networks. Empirically the study explores the change that has taken place in pharmaceutical retailing in Finland during recent years. The phenomenon of emerging pharmacy networks is highly contemporary in the Nordic countries, where the traditional license-based pharmacy business is changing. The study analyses the development of two Finnish pharmacy chains, one integrated and one voluntary chain, and the network structures and dynamics in them. Social Network Analysis is applied to explore the social structures within the pharmacy networks. The study shows that emerging pharmacy networks are multifaceted phenomena where political, economic, social, cultural, and historical elements together contribute to the observed changes. Individuals have always been strongly present in the pharmacy business and the development of pharmacy networks provides an interesting example of human actors’ influence in the development of business networks. The dynamics or forces driving the network development can be linked to actors’ own economic and social motives for developing the business. The study highlights the central role of individuals and social networks in the development of the two studied pharmacy networks. The relation between individuals and social networks is reciprocal. The social context of every individual enables multidimensional business actors. The mix of various identities, both individual and collective identities, is an important part of network dynamics. Social networks in pharmacy networks create a platform for exchange and social action, and social networks enable and support business network development.
Resumo:
This Working Paper reports the background to the first stage of the ongoing research project, The Quest for Well-being in Growth Industries: A Collaborative Study in Finland and Scotland, conducted under the auspices of the Academy of Finland research programme The Future of Work and Well-being (2008-2011). This collaborative project provides national and transnational data, analysis and outputs. The study is being conducted in the Department of Management and Organisation, Hanken School of Economics, Finland, in collaboration with Glasgow Caledonian University, University of East London, Heriot-Watt University and Reading University, UK. The project examines policies and practices towards the enhancement of work-related well-being in growth industries, and contradictory pressures and tensions posed in this situation. The overall aim is to evaluate the development, implementation and use of work-related well-being policies in four selected growth industries. These sectors – electronics, care, finance and accounting, and tourism – have been selected on the basis of European Union and national forecasts, and demographic and socio-economic trends in employment. In this working paper we outline the background to the research study, the initial research plan, and how the survey of employers has been constructed. The working paper concludes with a brief discussion of general ongoing research issues arising in the project.
Resumo:
A method is described for monitoring the concentration of endogenous receptor-bound gonadotropin in the ovarian tissue. This involved development of a radioimmunoassay procedure, the validity of which for measuring all of the tissue-bound hormone has been established. The specificity of the method of measurement was indicated by the fact that high levels of FSH could be measured only in target tissue such as follicles, while non-target organs showed little FSH. Using this method, the amount of FSH in the non-luteal ovarian tissue of the hamster at different stages of the estrous cycle was quantitated and compared with serum FSH levels found at these times. No correlation could be found between serum and tissue FSH levels at all times. On the morning of estrus, for example, when the serum level of FSH was high, the ovarian concentration was low, and on the evening of diestrus-2 the ovary exhibited high concentration of FSH, despite the serum FSH concentration being low at this time. The highest concentration of FSH in the ovary during the cycle was found on the evening of proestrus. Although a large amount of this was found in the Graafian follicles, a considerable amount could still be found in the �growing� follicles. Ovarian FSH concentration could be considered to be a reflection of FSH receptor content, since preventing the development of FSH receptors by blocking initiation of follicular development during the cycle resulted in a decrease in the concentration of FSH in the ovary. The high concentration of FSH in the ovary seen on the evening of diestrus-2 was not influenced either by varying the concentration of estrogen or by neutralization of LH. Neutralization of FSH on diestrus-2, on the other hand, caused a drastic reduction in the ovarian LH concentration on the next day (i.e. at proestrus), thus suggesting the importance of FSH in the induction of LH receptors.
Resumo:
In this paper, we report the results of a transmission electron microscopy investigation on WC–6 wt% ZrO2nanocomposite, spark plasma sintered at 1300 °C, for varying times of up to 20 min. The primary aim of this work was to understand the evolution of microstructure during such a sintering process. The investigation revealed the presence of nanocrystalline ZrO2particles (30–50 nm) entrapped within submicron WC grains. In addition, relatively coarser ZrO2(60–100 nm) particles were observed to be either attached to WC grain boundaries or located at WC triple grain junctions. The evidence of the presence of a small amount of W2C, supposed to have been formed due to sintering reaction between WC and ZrO2, is presented here. Detailed structural investigation indicated that ZrO2in the spark plasma sintered nanocomposite adopted an orthorhombic crystal structure, and the possible reasons for o-ZrO2formation are explained. The increase in kinetics of densification due to the addition of ZrO2is believed to be caused by the enhanced diffusion kinetics in the presence of nonstoichiometric nanocrystalline ZrO2.
Resumo:
Phase transformation behaviour of amorphous electroless Ni-B coating with a targeted composition of Ni-6wt% B is characterized in conjunction with microstructural development and hardness. Microscopic observations of the as-deposited coating display a novel microstructure which is already phase separated at multiple length scales. Spherical colonies of similar to 5 mu m consist of 2-3 mu m nodular regions which are surrounded by similar to 2-3 mu m region that contains fine bands ranging from 10 to 70 nm in width. The appearance of three crystalline phases in this binary system at different stages of heat treatment and the concomitant variation in hardness are shown to arise from nanoscale fluctuations in the as-deposited boron content from 4 to 8 wt%. High temperature annealing reveals continuous crystallization up to 430 degrees C, overlapping with the domain of B loss due to diffusion into the substrate. The implications of such a microstructure for optimal heat treatment procedures are discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]
Resumo:
G.N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.
Resumo:
G. N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.