901 resultados para Process Modeling, Collaboration, Distributed Modeling, Collaborative Technology
Resumo:
Thisresearch deals with the dynamic modeling of gas lubricated tilting pad journal bearings provided with spring supported pads, including experimental verification of the computation. On the basis of a mathematical model of a film bearing, a computer program has been developed, which can be used for the simulation of a special type of tilting pad gas journal bearing supported by a rotary spring under different loading conditions time dependently (transient running conditions due to geometry variations in time externally imposed). On the basis of literature, different transformations have been used in the model to achieve simpler calculation. The numerical simulation is used to solve a non-stationary case of a gasfilm. The simulation results were compared with literature results in a stationary case (steady running conditions) and they were found to be equal. In addition to this, comparisons were made with a number of stationary and non-stationary bearing tests, which were performed at Lappeenranta University of Technology using bearings designed with the simulation program. A study was also made using numerical simulation and literature to establish the influence of the different bearing parameters on the stability of the bearing. Comparison work was done with literature on tilting pad gas bearings. This bearing type is rarely used. One literature reference has studied the same bearing type as that used in LUT. A new design of tilting pad gas bearing is introduced. It is based on a stainless steel body and electron beam welding of the bearing parts. It has good operation characteristics and is easier to tune and faster to manufacture than traditional constructions. It is also suitable for large serial production.
Resumo:
Many European states apply score systems to evaluate the disability severity of non-fatal motor victims under the law of third-party liability. The score is a non-negative integer with an upper bound at 100 that increases with severity. It may be automatically converted into financial terms and thus also reflects the compensation cost for disability. In this paper, discrete regression models are applied to analyze the factors that influence the disability severity score of victims. Standard and zero-altered regression models are compared from two perspectives: an interpretation of the data generating process and the level of statistical fit. The results have implications for traffic safety policy decisions aimed at reducing accident severity. An application using data from Spain is provided.
Resumo:
The literature part of the work reviews overall Fischer-Tropsch process, Fischer-Tropsch reactors and catalysts. Fundamentals of Fischer-Tropsch modeling are also presented. The emphasis is on the reactor unit. Comparison of the reactors and the catalysts is carried out to choose the suitable reactor setup for the modeling work. The effects of the operation conditions are also investigated. Slurry bubble column reactor model operating with cobalt catalyst is developed by taking into account the mass transfer of the reacting components (CO and H2) and the consumption of the reactants in the liquid phase. The effect of hydrostatic pressure and the change in total mole flow rate in gas phase are taken into account in calculation of the solubilities. The hydrodynamics, reaction kinetics and product composition are determined according to literature. The cooling system and furthermore the required heat transfer area and number of cooling tubes are also determined. The model is implemented in Matlab software. Commercial scale reactor setup is modeled and the behavior of the model is investigated. The possible inaccuraries are evaluated and the suggestions for the future work are presented. The model is also integrated to Aspen Plus process simulation software, which enables the usage of the model in more extensive Fischer-Tropsch process simulations. Commercial scale reactor of diameter of 7 m and height of 30 m was modeled. The capacity of the reactor was calculated to be about 9 800 barrels/day with CO conversion of 75 %. The behavior of the model was realistic and results were in the right range. The highest uncertainty to model was estimated to be caused by the determination of the kinetic rate.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
The chemistry of gold dissolution in alkaline cyanide solution has continually received attention and new rate equations expressing the gold leaching are still developed. The effect of leaching parameters on gold gold cyanidation is studied in this work in order to optimize the leaching process. A gold leaching model, based on the well-known shrinking-core model, is presented in this work. It is proposed that the reaction takes place at the reacting particle surface which is continuously reduced as the reaction proceeds. The model parameters are estimated by comparing experimental data and simulations. The experimental data used in this work was obtained from Ling et al. (1996) and de Andrade Lima and Hodouin (2005). Two different rate equations, where the unreacted amount of gold is considered in one equation, are investigated. In this work, it is presented that the reaction at the surface is the rate controlling step since there is no internal diffusion limitation. The model considering the effect of non-reacting gold shows that the reaction orders are consistent with the experimental observations reported by Ling et al. (1996) and de Andrade Lima and Hodouin (2005). However, it should be noted that the model obtained in this work is based on assumptions of no side reactions, no solid-liquid mass transfer resistances and no effect from temperature.
Resumo:
Recent technology has provided us with new information about the internal structures and properties of biomolecules. This has lead to the design of applications based on underlying biological processes. Applications proposed for biomolecules are, for example, the future computers and different types of sensors. One potential biomolecule to be incorporated in the applications is bacteriorhodopsin. Bacteriorhodopsin is a light-sensitive biomolecule, which works in a similar way as the light sensitive cells of the human eye. Bacteriorhodopsin reacts to light by undergoing a complicated series of chemical and thermal transitions. During these transitions, a proton translocation occurs inside the molecule. It is possible to measure the photovoltage caused by the proton translocations when a vast number of molecules is immobilized in a thin film. Also the changes in the light absorption of the film can be measured. This work aimed to develop the electronics needed for the voltage measurements of the bacteriorhodopsin-based optoelectronic sensors. The development of the electronics aimed to get more accurate information about the structure and functionality of these sensors. The sensors used in this work contain a thick film of bacteriorhodopsin immobilized in polyvinylalcohol. This film is placed between two transparent electrodes. The result of this work is an instrumentation amplifier which can be placed in a small space very close to the sensor. By using this amplifier, the original photovoltage can be measured in more detail. The response measured using this amplifier revealed two different components, which could not be distinguished earlier. Another result of this work is the model for the photoelectric response in dry polymer films.
Resumo:
Value chain collaboration has been a prevailing topic for research, and there is a constantly growing interest in developing collaborative models for improved efficiency in logistics. One area of collaboration is demand information management, which enables improved visibility and decrease of inventories in the value chain. Outsourcing of non-core competencies has changed the nature of collaboration from intra-enterprise to cross-enterprise activity, and this together with increasing competition in the globalizing markets have created a need for methods and tools for collaborative work. The retailer part in the value chain of consumer packaged goods (CPG) has been studied relatively widely, proven models have been defined, and there exist several best practice collaboration cases. The information and communications technology has developed rapidly, offering efficient solutions and applications to exchange information between value chain partners. However, the majority of CPG industry still works with traditional business models and practices. This concerns especially companies operating in the upstream of the CPG value chain. Demand information for consumer packaged goods originates at retailers' counters, based on consumers' buying decisions. As this information does not get transferred along the value chain towards the upstream parties, each player needs to optimize their part, causing safety margins for inventories and speculation in purchasing decisions. The safety margins increase with each player, resulting in a phenomenon known as the bullwhip effect. The further the company is from the original demand information source, the more distorted the information is. This thesis concentrates on the upstream parts of the value chain of consumer packaged goods, and more precisely the packaging value chain. Packaging is becoming a part of the product with informative and interactive features, and therefore is not just a cost item needed to protect the product. The upstream part of the CPG value chain is distinctive, as the product changes after each involved party, and therefore the original demand information from the retailers cannot be utilized as such – even if it were transferred seamlessly. The objective of this thesis is to examine the main drivers for collaboration, and barriers causing the moderate adaptation level of collaborative models. Another objective is to define a collaborative demand information management model and test it in a pilot business situation in order to see if the barriers can be eliminated. The empirical part of this thesis contains three parts, all related to the research objective, but involving different target groups, viewpoints and research approaches. The study shows evidence that the main barriers for collaboration are very similar to the barriers in the lower part of the same value chain; lack of trust, lack of business case and lack of senior management commitment. Eliminating one of them – the lack of business case – is not enough to eliminate the two other barriers, as the operational model in this thesis shows. The uncertainty of the future, fear of losing an independent position in purchasing decision making and lack of commitment remain strong enough barriers to prevent the implementation of the proposed collaborative business model. The study proposes a new way of defining the value chain processes: it divides the contracting and planning process into two processes, one managing the commercial parts and the other managing the quantity and specification related issues. This model can reduce the resistance to collaboration, as the commercial part of the contracting process would remain the same as in the traditional model. The quantity/specification-related issues would be managed by the parties with the best capabilities and resources, as well as access to the original demand information. The parties in between would be involved in the planning process as well, as their impact for the next party upstream is significant. The study also highlights the future challenges for companies operating in the CPG value chain. The markets are becoming global, with toughening competition. Also, the technology development will most likely continue with a speed exceeding the adaptation capabilities of the industry. Value chains are also becoming increasingly dynamic, which means shorter and more agile business relationships, and at the same time the predictability of consumer demand is getting more difficult due to shorter product life cycles and trends. These changes will certainly have an effect on companies' operational models, but it is very difficult to estimate when and how the proven methods will gain wide enough adaptation to become standards.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
The thesis deals with the phenomenon of learning between organizations in innovation networks that develop new products, services or processes. Inter organizational learning is studied especially at the level of the network. The role of the network can be seen as twofold: either the network is a context for inter organizational learning, if the learner is something else than the network (organization, group, individual), or the network itself is the learner. Innovations are regarded as a primary source of competitiveness and renewal in organizations. Networking has become increasingly common particularly because of the possibility to extend the resource base of the organization through partnerships and to concentrate on core competencies. Especially in innovation activities, networks provide the possibility to answer the complex needs of the customers faster and to share the costs and risks of the development work. Networked innovation activities are often organized in practice as distributed virtual teams, either within one organization or as cross organizational co operation. The role of technology is considered in the research mainly as an enabling tool for collaboration and learning. Learning has been recognized as one important collaborative process in networks or as a motivation for networking. It is even more important in the innovation context as an enabler of renewal, since the essence of the innovation process is creating new knowledge, processes, products and services. The thesis aims at providing enhanced understanding about the inter organizational learning phenomenon in and by innovation networks, especially concentrating on the network level. The perspectives used in the research are the theoretical viewpoints and concepts, challenges, and solutions for learning. The methods used in the study are literature reviews and empirical research carried out with semi structured interviews analyzed with qualitative content analysis. The empirical research concentrates on two different areas, firstly on the theoretical approaches to learning that are relevant to innovation networks, secondly on learning in virtual innovation teams. As a result, the research identifies insights and implications for learning in innovation networks from several viewpoints on organizational learning. Using multiple perspectives allows drawing a many sided picture of the learning phenomenon that is valuable because of the versatility and complexity of situations and challenges of learning in the context of innovation and networks. The research results also show some of the challenges of learning and possible solutions for supporting especially network level learning.
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
This work presents the use of potentiometric measurements for kinetic studies of biosorption of Cd2+ ions from aqueous solutions on Eichhornia crassipes roots. The open circuit potential of the Cd/Cd2+ electrode of the first kind was measured during the bioadsorption process. The amount of Cd2+ ions accumulated was determined in real time. The data were fit to different models, with the pseudo-second-order model proving to be the best in describing the data. The advantages and limitations of the methodology proposed relative to the traditional method are discussed.
Resumo:
This thesis is a preliminary study targeting South-Eastern Finland. The objective was to find out the financial and functional readiness and willingness of the small and medium-sized enterprises of the region to manufacture and sell distributed bioenergy solutions collaboratively as a business network. In this case these solutions mean small-scale (0.5 - 3 MW) woodchips-operated combined heat and power (CHP) plants. South-Eastern Finland has suffered from a decline in the recent years, mostly due to the problems of the traditionally strong industrial know-how area of the region, the paper industry. Local small and medium-sized companies will have to find new ways to survive the toughening competition. A group of 40 companies from suitable industries were selected and financial and comparative analysis was performed on them. Additionally 19 managing directors of the companies were selected for an interview to find out their views on networking, its requirements, advantages and the general interest in it. The studied companies were found to be generally in fairly good financial condition and in that sense, fit for networking activities. The interviews revealed that the companies were capable of producing all the needed elements for the plants in question, and the managers appeared to be very interested in and have a positive attitude towards such business networks. Thus it can be said that the small and medium-sized companies of the region are capable of and interested in manufacturing small bio-CHP plants as a production network.
Resumo:
By alloying metals with other materials, one can modify the metal’s characteristics or compose an alloy which has certain desired characteristics that no pure metal has. The field is vast and complex, and phenomena that govern the behaviour of alloys are numerous. Theories cannot penetrate such complexity, and the scope of experiments is also limited. This is why the relatively new field of ab initio computational methods has much to give to this field. With these methods, one can extend the understanding given by theories, predict how some systems might behave, and be able to obtain information that is not there to see in physical experiments. This thesis pursues to contribute to the collective knowledge of this field in the light of two cases. The first part examines the oxidation of Ag/Cu, namely, the adsorption dynamics and oxygen induced segregation of the surface. Our results demonstrate that the presence of Ag on the Cu(100) surface layer strongly inhibits dissociative adsorption. Our results also confirmed that surface reconstruction does happen, as experiments predicted. Our studies indicate that 0.25 ML of oxygen is enough for Ag to diffuse towards the bulk, under the copper oxide layer. The other part elucidates the complex interplay of various energy and entropy contributions to the phase stability of paramagnetic duplex steel alloys. We were able to produce a phase stability map from first principles, and it agrees with experiments rather well. Our results also show that entropy contributions play a very important role on defining the phase stability. This is, to the author’s knowledge, the first ab initio study upon this subject.
Resumo:
This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.