931 resultados para Presbyterian-University of Pennsylvania Medical Center.
Resumo:
This evaluation was commissioned by Martin Hanlon, Director of the Planning and Quality Unit of the University of Technology, Sydney (UTS) to investigate the Student Feedback Survey (SFS) system, engagement in stakeholder feedback and provide recommendations against the Terms of Reference.
Resumo:
This qualitative case study explored leaders' and faculty members' perspectives on the nature of academic leadership at the Royal University of Bhutan (RUB) Colleges. The study revealed that academic leadership at the Colleges is a complex and emergent fusion of Western and Buddhist leadership. The research recommended a hybrid model intended to inform academic leadership development in Bhutanese higher education and contribute to the realisation of the Gross National Happiness philosophy. The model incorporates Buddhist-influenced leadership and other relevant leadership approaches and is expected to contribute to academic rigour through effective learning and research leadership.
Resumo:
Pilot studies are conducted to explain the baseline information literacy skills prevailing in the undergraduate and graduate nurses at the University of Queensland. The analyses reveal a significant difference between the skills of both the nurses, hence demonstrating the need for the development of new information literacy workshops. The author also presents various teaching strategies that can be adopted for an effective skill development of these nurses.
Holistically approaching curriculum renewal: A case study of the Queensland University of Technology
Resumo:
There are still many programs in Australia and overseas where curricula comprise largely 20th Century-relevant graduate outcomes, framed in 20th Century learning and teaching approaches. A ‘Dynamic and Deliberative Model for Curriculum Renewal’ (DDMCR) model exists for undertaking such curriculum renewal that draws on the experiences of educators around the world, however there are few experiences to date in applying this model. At the Queensland University of Technology, the 2012 accreditation by Engineers Australia observed that, despite being exposed to relevant discipline-specific engineering curriculum and practice, students did not seem to be aware of the relevance of sustainable development to their degree, beyond first year exposure. In addressing this feedback, level 8 Australian Qualifications Framework, and drawing ideas from the DDMCR model, faculty senior management undertook a full review of the engineering curriculum.
Resumo:
UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.
Resumo:
Thomas Krakauer's father, Hans Krakauer is second from left in the rear row.
Resumo:
Thomas Krakauer's father, Hans Krakauer is second from left in the rear row.
Resumo:
This study investigates the level of pollutants (polycyclic aromatic hydrocarbons (PAHs) and heavy metals) in three car parks at QUT, one at Kelvin Grove campus and two at the Gardens Point campus. In addition, comparisons between site designs were assessed to identify the possible sources of heavy metals and PAHs. The main contributing source for heavy metals was identified to be from vehicle debris and emissions, while the source of PAHs was identified to be from petrol and diesel engine vehicle emissions. The highest concentration of pollutants was typically found for the 63 micro meter dust samples, proposed to be due to increased surface areas and thus available adsorption sites.
Resumo:
During the last 10-15 years interest in mouse behavioural analysis has evolved considerably. The driving force is development in molecular biological techniques that allow manipulation of the mouse genome by changing the expression of genes. Therefore, with some limitations it is possible to study how genes participate in regulation of physiological functions and to create models explaining genetic contribution to various pathological conditions. The first aim of our study was to establish a framework for behavioural phenotyping of genetically modified mice. We established comprehensive battery of tests for the initial screening of mutant mice. These included tests for exploratory and locomotor activity, emotional behaviour, sensory functions, and cognitive performance. Our interest was in the behavioural patterns of common background strains used for genetic manipulations in mice. Additionally we studied the behavioural effect of sex differences, test history, and individual housing. Our findings highlight the importance of careful consideration of genetic background for analysis of mutant mice. It was evident that some backgrounds may mask or modify the behavioural phenotype of mutants and thereby lead to false positive or negative findings. Moreover, there is no universal strain that is equally suitable for all tests, and using different backgrounds allows one to address possible phenotype modifying factors. We discovered that previous experience affected performance in several tasks. The most sensitive traits were the exploratory and emotional behaviour, as well as motor and nociceptive functions. Therefore, it may be essential to repeat some of the tests in naïve animals for assuring the phenotype. Social isolation for a long time period had strong effects on exploratory behaviour, but also on learning and memory. All experiments revealed significant interactions between strain and environmental factors (test history or housing condition) indicating genotype-dependent effects of environmental manipulations. Several mutant line analyses utilize this information. For example, we studied mice overexpressing as well as those lacking extracellular matrix protein heparin-binding growth-associated molecule (HB-GAM), and mice lacking N-syndecan (a receptor for HB-GAM). All mutant mice appeared to be fertile and healthy, without any apparent neurological or sensory defects. The lack of HB-GAM and N-syndecan, however, significantly reduced the learning capacity of the mice. On the other hand, overexpression of HB-GAM resulted in facilitated learning. Moreover, HB-GAM knockout mice displayed higher anxiety-like behaviour, whereas anxiety was reduced in HB-GAM overexpressing mice. Changes in hippocampal plasticity accompanied the behavioural phenotypes. We conclude that HB-GAM and N-syndecan are involved in the modulation of synaptic plasticity in hippocampus and play a role in regulation of anxiety- and learning-related behaviour.
Resumo:
The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.
Resumo:
K-Cl cotransporter 2 (KCC2) maintains a low intracellular Cl concentration required for fast hyperpolarizing responses of neurons to classical inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. Decreased Cl extrusion observed in genetically modified KCC2-deficient mice leads to depolarizing GABA responses, impaired brain inhibition, and as a consequence to epileptic seizures. Identification of mechanisms regulating activity of the SLC12A5 gene, which encodes the KCC2 cotransporter, in normal and pathological conditions is, thus, of extreme importance. Multiple reports have previously elucidated in details a spatio-temporal pattern of KCC2 expression. Among the characteristic features are an exclusive neuronal specificity, a dramatic upregulation during embryonic and early postnatal development, and a significant downregulation by neuronal trauma. Numerous studies confirmed these expressional features, however transcriptional mechanisms predetermining the SLC12A5 gene behaviour are still unknown. The aim of the presented thesis is to recognize such transcriptional mechanisms and, on their basis, to create a transcriptional model that would explain the established SLC12A5 gene behaviour. Up to recently, only one KCC2 transcript has been thought to exist. A particular novelty of the presented work is the identification of two SLC12A5 gene promoters (SLC12A5-1a and SLC12A5-1b) that produce at least two KCC2 isoforms (KCC2a and KCC2b) differing by their N-terminal parts. Even though a functional 86Rb+ assay reveals no significant difference between transport activities of the isoforms, consensus sites for several protein kinases, found in KCC2a but not in KCC2b, imply a distinct kinetic regulation. As a logical continuation, the current work presents a detailed analysis of the KCC2a and KCC2b expression patterns. This analysis shows an exclusively neuron-specific pattern and similar expression levels for both isoforms during embryonic and neonatal development in rodents. During subsequent postnatal development, the KCC2b expression dramatically increases, while KCC2a expression, depending on central nervous system (CNS) area, either remains at the same level or moderately decreases. In an attempt to explain both the neuronal specificity and the distinct expressional kinetics of the KCC2a and KCC2b isoforms during postnatal development, the corresponding SLC12A5-1a and SLC12A5-1b promoters have been subjected to a comprehensive bioinformatical analysis. Binding sites of several transcription factors (TFs), conserved in the mammalian SLC12A5 gene orthologs, have been identified that might shed light on the observed behaviour of the SLC12A5 gene. Possible roles of these TFs in the regulating of the SLC12A5 gene expression have been elucidated in subsequent experiments and are discussed in the current thesis.
Resumo:
Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.