982 resultados para Prediction theory.
Resumo:
The aim of this study was to compare the measurement of total body water (TBW) by deuterium ((H2O)-H-2) dilution and bioelectrical impedance analysis (BIA) in patients with cystic fibrosis (CF) and healthy controls. Thirty-six clinically stable patients with CF (age 25.4 +/- 5.6 yrs) and 42 healthy controls (age 25.4 +/- 4.8) were recruited into this study. TBW was measured by (H2O)-H-2 dilution and predicted by BIA in patients and controls. The TBW predicted from BIA was significantly different from TBW as measured using (H2O)-H-2 in patients (P
Resumo:
This paper reports a study that explored a new construct: climate of fear. We hypothesised that climate of fear would vary across work sites within organisations, but not across organisations. This is in contrast a to measures of organisational culture, which were expected to vary both within and across organisations. To test our hypotheses, we developed a new 13-item measure of perceived fear in organisations and tested it in 20 sites across two organisations (N = 209). Culture variables measured were innovative leadership culture, and communication culture. Results were that climate of fear did vary across sites in both organisations, while differences across organisations were not significant, as we anticipated. Organisational culture, however, varied between the organisations, and within one of the organisations. The climate of fear scale exhibited acceptable psychometric properties.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
Background Exercise testing has limited efficacy for identifying coronary artery disease (CAD) in the absence of anginal. symptoms. Exercise echocardiography is more accurate than standard exercise testing, but its efficacy in this situation has not been defined. We sought to identify whether the Duke treadmill. score or exercise echocardiography (ExE) could be used to identify risk in patients without anginal symptoms. Methods We studied 1859 patients without typical or atypical angina, heart failure, or a history or ECG evidence of infarction or CAD, who were referred for ExE, of whom 1832 (age 51 15 years, 944 men) were followed for up to 10 years. The presence and extent of ischaemia and scar were interpreted by expert reviewers at the time of the original study. Results Exercise provoked significant (>0.1 mV) ST segment depression in 215 patients (12%), and wall motion abnormalities in 137 (8%). Seventy-eight patients (4%) died before revascularization, only 17 from known cardiac causes. The independent predictors of death were age (RR 1.1, p
Resumo:
Theory supports the use of a segmental methodology (SM) for bioimpedance analysis (BIA) of body water (BW). However, previous studies have generally failed to show a significant improvement when the SM is used in place of a whole-body methodology. A pilot study was conducted to compare the two methodologies in control and overweight subjects. BW of each subject was measured by D2O dilution and also estimated from BIA measurements. Bland and Altman analysis was used to compare the two values of BW. The SM resulted in a small but not significantly improved limits of agreement of measured and BIA estimated BW (psimilar to0.3). This and the results of previous studies suggest that improvements in prediction of BW obtained from application of the SM may be intrinsically small and may not justify the additional effort in application.
Resumo:
A new questionnaire, the Maternal Mental State Input Inventory (MMSII) was created to measure mothers' preferences for introducing and elaborating on mental states in conversation with their young children. In two studies, the questionnaire was given to mothers of young children, and the children's theory of mind (ToM) development was assessed with standard tasks. In both studies, the questionnaire exhibited good internal reliability, and significant correlations emerged between mothers' self-reported preferences for elaborated, explanatory talk about the mental states and children's theory of mind performance. Further, mothers' conversational preferences, as measured by the MMSII, were the best predictors of children's theory of mind development when relevant control variables were included in the analyses. These results converge with naturalistic observational research that has demonstrated links between mothers' conversational styles and their children's theory of mind. They go further in suggesting that mothers' tendencies toward elaborated, explanatory talk about a range of mental states is particularly beneficial to children's theory of mind development. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump pump, Stokes signal, and Raman coherence idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.
Resumo:
We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections. Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes, including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible effect on the collective transport coefficient. We show that dispersive fluid-wall interactions considerably attenuate transport compared to classical hard sphere theory.
Resumo:
An integrated mathematical model for the kinetics of multicomponent adsorption on microporous carbon was developed. Transport in this bidisperse solid is represented by balance equations in the macropore and micropore phases, in which gas-phase diffusion dominates the mass transfer in the macropores, with the phenomenological diffusivities represented by the generalized Maxwell-Stefan (GMS) formulation. Viscous flow also contributes to the macropore fluxes and is included in the MS expressions. Diffusion of the adsorbed phase controls the mass transfer in the micro ore phase, p which is also described in a similar way by the MS method. The adsorption isotherms are represented by a new heterogeneous modified vacancy solution theory formulation of adsorption, which has proved to be a robust method for adsorption on activated carbons. The model is applied to the coadsorption and codesorption of C2H6 and C3H8 on Ajax and Norit carbon, as well as the displacement on Ajax carbon. The effect of the viscous flow in the macropore phase is not significant for the cases studied. The model accurately predicts the overshoot behavior and rollup of C2H6 during coadsorption. The prediction for the heavier compound C3H8 is always satisfactory, though at higher C3H8 mole fraction, the overshoot extent of C2H6 is overpredicted, possibly due to neglect of heat effects.