954 resultados para Portugal, Rendimento das Sociedades, Regime Simplificado de
Resumo:
Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.
Resumo:
We investigate the mechanisms involved in the breakdown of the viscous regime in riblets, with a view to determining the point of optimum performance, where drag reduction ceases to be proportional to the riblet size. This occurs empirically for a groove cross-section $A_g^+ \approx 120^+$. To study the interaction of the riblets with the overlaying turbulent flow, we systematically conduct DNSes in a ribbed turbulent channel with increasing riblet size. The conditionally averaged crossflow above and within the grooves reveals a mean recirculation bubble that exists up to the point of viscous breakdown, isolating the groove floor from the overlying crossflow, and preventing the high momentum fluid from entering the grooves. We do not find evidence of outside vortices lodging within the grooves until $A_g^+ \approx 400$, which is well past the drag minimum, and already into the drag increasing regime. Interestingly, as the bubble breaks down, we observe that quasi-two-dimensional spanwise structures form just above the riblets, similar to those observed above porous surfaces and plant canopies, which appear to be involved in the performance degradation.
Resumo:
The laser-diode parameters at which the steady-state regime of generation becomes unstable are analyzed within the framework of the mode-locking model. The crucial role of the transverse inhomogeneity of the field, pumping intensity, and spectrum width in developing the instabilities of the steady-state regime of generation is demonstrated. The calculated values of the instability threshold are shown to be consistent with the experimental results. © 2008 Springer Science+Business Media, Inc.
Resumo:
We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.
Resumo:
We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © 2012 OSA.
Resumo:
We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.
Resumo:
To discover how a lake converts from a turbid state to clean state, and what drives this process, we constructed controlled enclosure ecosystems and used the ecological remediation method to force ecosystems to convert from the turbid state to the clean state. Our results show that the driving forces include temperature., macrophyte, silver carp and mussel, which form a combined force to drive the controlled ecosystem to switch. There is a threshold existing in treated enclosure ecosystem during the conversion from turbid to clean state. When TP <0.09 mg.L-1, Chl-a <0.036 mg.L-1, transparency >62 cm, TN <2.15 mg.L-1, CODMn <13.7 mg.L-1, tubidity <10, and the number of algal cells <10(6) cells.L-1, the treated ecosystem changes sharply from turbid to clean state. The conversion process can be divided into three phases: turbid state, clean-turbid transitional state as well as clean state, and described with the power function Y = a*X-b (where Y is water parameter, X is time, a and b are constants), which indicates that the shift in the enclosure ecosystem from turbid to clean state is discontinuous.
Resumo:
We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © OSA 2012.
Resumo:
The antibunching properties of the fluorescence from a two-level ideal system in a 12-fold quasiperiodic photonic crystal are investigated based on the calculated local density of states. We found that the antibunching phenomenon of the fluorescence from two-level ideal systems could be significantly changed by varying their positions, i.e., perfect antibunching and antibunching with damped Rabi oscillation phenomenon occurred in different positions and at different frequencies in photonic crystals as a result of the large differences in the local density of states. This study revealed that the multi-level coherence of fluorescence from a two-level ideal system could be manipulated by controlling the position of the two-level ideal system in photonic crystals and the emission frequency in the photonic band structure. Copyright (C) EPLA, 2008
Resumo:
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.