980 resultados para Polyacrylamide gel electrophoresis
Resumo:
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Resumo:
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most frequent systemic mycosis in Latin America. Our group has been working with paracoccin, a P. brasiliensis lectin with MM 70 kDa. which is purified by affinity, with immobilized N-acetylglucosamine (GlcNAc). Paracoccin has been described to play a role in fungal adhesion to extracellular matrix components and to induce high and persistent levels or TNF alpha. and nitric oxide production by macrophages. In the cell wall, paracoccin colocalizes with the beta-1,4-homopolymer of GlcNAc into the budding sites of the P. brasiliensis yeast cell. In this paper we present a protocol for the chitin-affinity purification or paracoccin. This procedure provided higher yields than those achieved by means of the technique based oil the affinity of this lectin with GlcNAc and had an impact on downstream assays. SDS-PAGE and Western blot analysis revealed similarities between the N-acetylglucosamine- and chitin-bound fractions, confirmed by MALDI-TOF-MS of trypsinic peptides. Western blot of two-dimensional gel electrophoresis of the yeast extract showed a major spot with M(r) 70000 and pl approximately 5.63. Moreover, an N-acetyl-beta-D-glucosaminidase activity was reported for paracoccin, thereby providing new insights into the mechanisms that lead to cell wall remodelling and opening new perspectives for its structural characterization. Copyright (C) 2009 John Wiley & Sons. Ltd.
Resumo:
Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Helicobacter pylori is a bacterium recognized as the major cause of peptic ulcer and chronic gastritis. Recently, a proteome-based approach was developed to investigate pathogenic factors related to H. pylori. In this preliminary study, H. pylori strains were isolated from gastric biopsies of patients with chronic gastritis and duodenal ulcers. A partial proteomic analysis of H. pylori strains was performed by bacterial lyses and proteins were separated by two-dimensional gel electrophoresis (2-DE). A comparative analysis was performed to verify a differential protein expression between these two 2-DE maps. These data should be useful to clarify the role of different proteins related to bacterial pathogenesis. This study will be completed using a larger number of samples and protein identification of H. pylori by MALDI-TOF mass spectrometry.
Resumo:
Crude antigen and semi-purified proteins from scolices of Taenia solium cysticerci were evaluated for the immunodiagnosis of human neurocysticercosis neurocysticercosis. Semi-purified proteins obtained by electrophoresis on polyacrylamide gel and by electroelution were tested by means of the immunoenzymatic reaction against sera from normal individuals and from patients with neurocysticercosis or other parasitic diseases. The 100kDa protein provided 100% sensitivity and specificity in the immunodiagnosis. When 95 or 26kDa proteins were used, 95 and 100% sensitivity and specificity were obtained, respectively. The assays involving crude antigen and sera from normal individuals or from patients with neurocysticercosis, diluted to 1:256, gave excellent agreement with those in which 100, 95 or 26kDa proteins were tested against the same serum samples diluted to 1:64. (Kappa: 0.95 to 1.00). Crude scolex antigen may be useful for serological screening, while 100, 95 or 26kDa protein can be used in confirmatory tests on neurocysticercosis-positive cases.
Resumo:
Of eleven proteins analyzed in four Amazonian populations, the esterases showed the greatest variation, with five activity zones. EST1, EST2 and EST5 showed variation in each of the populations studied. EST1 and EST2 are each controlled by two, and EST5 by four, codomi-nant alleles. LAP presented six activity zones, with codominant variation in LAP5and LAP6.oc—GPDH was monomorphic with one activity band on starch gel and two on polyacrylamide gel. 1DH presented two activity zones, with variation in the IDHl region. PGM had a single activity zone, with variation in all populations. The Ariquemes populations showed five alleles and the other populations three, all of then codominant. Three activity zones with two codominant alleles were observed for ODH. Aldehyde Oxidase showed two activity zones, with variation in AOl only in the Ariquemes and Porto Velho/Samuel populations. 6-PGDH showed only one activity zone and variation only in the Ariquemes population. The remaing systems - XDH, G-6-PDH and GDH. was monomorphic.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
Microtubule-associated protein 1b, also named MAP5 and MAP1x, is essential for neuronal differentiation. In kitten cerebellum, this protein is partially phosphorylated. During early postnatal development, a phosphorylated form was localized prominently in growing parallel fibres and in mitotic spindles of neuroblasts in the germinal layer, whereas a non-phosphorylated MAP1b form was found in dendrites, perikarya and axons. The MAP1x epitope showed the same immunohistochemical distribution, as seen for phosphorylated MAP1b, while its recognition on immunoblots was independent of phosphorylation. It is concluded that post-translational modifications and conformation of MAP1b influence the immunological detection of MAP1b, and are essential in the neuronal growth processes and mitosis. The antibody against the phosphorylated MAP1b may represent a good marker to identify dividing neurones.
Resumo:
Primary powders of Bacillus sphaericus strain S2 isolated from soil samples in Brazil, and strain 2362 were produced in a 14 liter fermentor. Growth patterns and sporulation observed in three trials with strains S2 and 2362 in the fermentor were similar. Second-instar larvae of Culex quinquefasciatus, Anopheles albimanus, Anopheles quadrimaculatus, and Aedes aegypti exposed for 48 hr to strain S2 responded with LC50 values of 0.25, 5.95, 12.28 and 140.0 ppb of lyophilized primary powder, respectively. Under the same conditions, strain 2362 resulted in LC50 values of 0.39, 7.16, 16.93 and 307.0 ppb of lyophilized primary powder, respectively, in those mosquito larvae. Statistical analysis of the bioassay data did not show significant differences among LC50 values observed in B. sphaericus strains S2 and 2362, at the 0.05 level. Toxins of strains S2 and 2362 were extracted at pH 12 with NaOH. Electrophoresis of the extracts in polyacrylamide gel under denaturing conditions revealed the 51 and 42 kDa toxins in both S2 and 2362 B. sphaericus strains. The presence of the 42 kDa peptide in the extracts was confirmed by Western blot and Elisa, with anti-42 kDa IgG previously prepared from strain 2362.
Resumo:
Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log(10) CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost < or =2 log(10) CFU/ml/24 h. The mutants had unchanged penicillin-binding proteins but contained increased amounts of two proteins with respective masses of ca. 50 and 45 kDa. One mutant (Tol1) was further characterized. The two proteins showing increased levels were homologous to the arginine deiminase and ornithine carbamoyl transferase of other gram-positive bacteria and were encoded by an operon that was >80% similar to the arginine-deiminase (arc) operon of these organisms. Partial nucleotide sequencing and insertion inactivation of the S. gordonii arc locus indicated that tolerance was not a direct consequence of arc alteration. On the other hand, genetic transformation of tolerance by Tol1 DNA always conferred arc deregulation. In nontolerant recipients, arc was repressed during exponential growth and up-regulated during postexponential growth. In tolerant transformants, arc was constitutively expressed. Tol1 DNA transformed tolerance at the same rate as transformation of a point mutation (10(-2) to 10(-3)). The tolerance mutation mapped on a specific chromosomal fragment but was physically distant from arc. Importantly, arc deregulation was observed in most (6 of 10) of additional independent penicillin-tolerant mutants. Thus, although not exclusive, the association between arc deregulation and tolerance was not fortuitous. Since penicillin selection mimicked the antibiotic pressure operating in the clinical environment, arc deregulation might be an important correlate of naturally occurring tolerance and help in understanding the mechanism(s) underlying this clinically problematic phenotype.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
T cell migration, essential for immune surveillance and response, is mediated by the integrin LFA-1. CatX, a cysteine carboxypeptidase, is involved in the regulation of T cell migration by interaction with LFA-1. We show that sequential cleavage of C-terminal amino acids from the β(2) cytoplasmic tail of LFA-1, by CatX, enhances binding of the adaptor protein talin to LFA-1 and triggers formation of the latter's high-affinity form. As shown by SPR analysis of peptides constituting the truncated β(2) tail, the cleavage of three C-terminal amino acids by CatX resulted in a 1.6-fold increase of talin binding. Removal of one more amino acid resulted in a 2.5-fold increase over the intact tail. CatX cleavage increased talin-binding affinity to the MD but not the MP talin-binding site on the β(2) tail. This was shown by molecular modeling of the β(2) tail/talin F3 complex to be a result of conformational changes affecting primarily the distal-binding site. Analysis of LFA-1 by conformation-specific mAb showed that CatX modulates LFA-1 affinity, promoting formation of high-affinity from intermediate-affinity LFA-1 but not the initial activation of LFA-1 from a bent to extended form. CatX post-translational modifications may thus represent a mechanism of LFA-1 fine-tuning that enables the trafficking of T cells.
Resumo:
In a murine model of experimental cutaneous leishmaniasis, we investigated the protection elicited by injection of histone H1 isolated from parasites by perchloric extraction, of a H1 recombinant protein produced in E. coli, and of H1 long and short synthetic peptides, against infection by L. major. Partial protection was achieved in most of the animals as shown by reduction in lesion size, upon immunization with histone H1 or its peptides, provided that the region 1-60 was present in the molecule. These observations argue in favor of a thorough examination of the possibility of including histone H1 described here in a cocktail vaccine against human leishmaniasis.
Resumo:
BACKGROUND: Prion diseases are a group of invariably fatal neurodegenerative disorders affecting humans and a wide range of mammals. An essential part of the infectious agent, termed the prion, is composed of an abnormal isoform (PrPSc) of a host-encoded normal cellular protein (PrPC). The conversion of PrPC to PrPSc is thought to play a crucial role in the development of prion diseases and leads to PrPSc deposition, mainly in the central nervous system. Sporadic Creutzfeldt-Jakob disease (sCJD), the most common form of human prion disease, presents with a marked clinical heterogeneity. This diversity is accompanied by a molecular signature which can be defined by histological, biochemical, and genetic means. The molecular classification of sCJD is an important tool to aid in the understanding of underlying disease mechanisms and the development of therapy protocols. Comparability of classifications is hampered by disparity of applied methods and inter-observer variability. METHODS AND FINDINGS: To overcome these difficulties, we developed a new quantification protocol for PrPSc by using internal standards on each Western blot, which allows for generation and direct comparison of individual PrPSc profiles. By studying PrPSc profiles and PrPSc type expression within nine defined central nervous system areas of 50 patients with sCJD, we were able to show distinct PrPSc distribution patterns in diverse subtypes of sCJD. Furthermore, we were able to demonstrate the co-existence of more than one PrPSc type in individuals with sCJD in about 20% of all patients and in more than 50% of patients heterozygous for a polymorphism on codon 129 of the gene encoding the prion protein (PRNP). CONCLUSION: PrPSc profiling represents a valuable tool for the molecular classification of human prion diseases and has important implications for their diagnosis by brain biopsy. Our results show that the co-existence of more than one PrPSc type might be influenced by genetic and brain region-specific determinants. These findings provide valuable insights into the generation of distinct PrPSc types.