945 resultados para Poly (ether-ether-ketone) (PEEK)
Resumo:
Polybrominated diphenyl ethers (PBDEs) have been measured in the home environment and in humans, but studies linking environmental levels to body burdens are limited. This study examines the relationship between PBDE concentrations in house dust and serum from adults residing in these homes. We measured PBDE concentrations in house dust from 50 homes and in serum of male-female couples from 12 of the homes. Detection rates, dust-serum, and within-matrix correlations varied by PBDE congener. There was a strong correlation (r = 0.65-0.89, p < 0.05) between dust and serum concentrations of several predominant PBDE congeners (BDE 47, 99, and 100). Dust and serum levels of BDE 153 were not correlated (r < 0.01). The correlation of dust and serum levels of BDE 209 could not be evaluated due to low detection rates of BDE 209 in serum. Serum concentrations of the sum of BDE 47, 99, and 100 were also strongly correlated within couples (r = 0.85, p = 0.0005). This study provides evidence that house dust is a primary exposure pathway of PBDEs and supports the use of dust PBDE concentrations as a marker for exposure to PBDE congeners other than BDE 153.
Resumo:
Non-ideal behaviour of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] in ethylene glycol monomethyl ether; CH3OCH2CH2OH (EGMME), ethylene glycol dimethyl ether; CH3OCH2CH2OCH3 (EGDME) and diethylene glycol dimethyl ether; CH3(OCH2CH2)2OCH3 (DEGDME) have been investigated over the whole composition range at T = (298.15 to 318.15) K. To gain insight into the mixing behaviour, results of density measurements were used to estimate excess molar volumes, image, apparent molar volumes, Vphi,i, partial molar volumes, image, excess partial molar volumes, image, and their limiting values at infinite dilution, image, image, and image, respectively. Volumetric results have been analyzed in the light of Prigogine–Flory–Patterson (PFP) statistical mechanical theory. Measurements of refractive indices n were also performed for all the binary mixtures over whole composition range at T = 298.15 K. Deviations in refractive indices ?phin and the deviation of molar refraction ?xR have been calculated from experimental data. Refractive indices results have been correlated with volumetric results and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich–Kister polynomial equation to obtain the binary coefficients and the standard errors.
Resumo:
The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We report the first liquid-liquid Ullmann etherification process mediated not only by oxidatively stable Cu but also by CuZn and CuSn nanoparticle catalysts in conjunction with microwave heating that also avoids the use of solid and expensive bases. Conditions have led to improved turnovers and excellent yields in heteroaromatic Ullmann-type coupling reactions. Further enhancement is achieved upon the addition of 18-crown-6 as a kinetic promoter.
Resumo:
Selected Bronsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.
Resumo:
We report the optimization of a series of non-MPEP site metabotropic glutamate receptor 5 (mGlu5) pos. allosteric modulators (PAMs) based on a simple acyclic ether series. Modifications led to a gain of MPEP site interaction through incorporation of a chiral amide in conjunction with a nicotinamide core. A highly potent PAM, 8v (VU0404251), was shown to be efficacious in a rodent model of psychosis. These studies suggest that potent PAMs within topol. similar chemotypes can be developed to preferentially interact or not interact with the MPEP allosteric binding site.
Resumo:
Dimethyl ether (DME) is amongst one of the most promising alternative, renewable and clean fuels being considered as a future energy carrier. In this study, the comparative catalytic performance of γ-Al2O3 prepared from two common precursors (aluminum nitrate (AN) and aluminum chloride (AC)) is presented. The impact of calcination temperature was evaluated in order to optimize both the precursor and pre-treatment conditions for the production of DME from methanol in a fixed bed reactor. The catalysts were characterized by TGA, XRD, BET and TPD-pyridine. Under reaction conditions where the temperature ranged from 180 °C to 300 °C with a WHSV = 12.1 h−1 it was found that all the catalysts prepared from AN(η-Al2O3) showed higher activity, at all calcination temperatures, than those prepared from AC(γ-Al2O3). In this study the optimum catalyst was produced from AN and calcined at 550 °C. This catalyst showed a high degree of stability and had double the activity of the commercial γ-Al2O3 or 87% of the activity of commercial ZSM-5(80) at 250 °C.
Resumo:
Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.
As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself.
Resumo:
The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.
Resumo:
Polybrominated diphenyl ethers (PBDEs) and cytochrome P450 enzyme activities were investigated in European eels (Anguilla anguilla) collected from seven sites in a coastal lagoon in the north-western Mediterranean Sea, Orbetello lagoon (Italy). Twelve PBDE congeners were measured in muscle and two CYP1A enzyme activities, 7-ethoxyresorufin-O-deethylase (EROD) and benzo(a)pyrene monooxygenase (BP (a)PMO), were investigated in liver microsomal fraction in order to obtain insights into the health of the lagoon environment. PBDE muscle levels were low and the most abundant congeners were 2,2',4,4'-tetrabronnodiphenylether (BDE-47), 2,2',4,4',5,5'-hexaBDE (BDE-153) and 2,2',4,5'-tetraBDE (BDE-49). EROD and B(a)PMO activities were also low and no differences were observed between eels from different sites. Multivariate analysis (PCA) did not indicate correlations between PBDEs and either P450 activities. (c) 2008 Elsevier Inc. All rights reserved.