972 resultados para Poker gambling problems
Resumo:
Artisanal Fish Societies constitutes one of the poorest societies in the developing world. Attempts to harness the potentials of the societies have often failed due to the enormity of the problem of poverty. This study was conducted in four major fishing villages namely; Abule titun, Apojola, Imama Odo and Ibaro in order to investigate the occupational practices and the problems of rural artisanal fisherfolks in Oyam's Dam, area of Ogun State. Eighty respondents were randomly selected among the artisanal fisher folks for interview using interview guide. The findings revealed that 43.8% of the fisherfolks are within active range of 31-40 years while 30% are within 21-30 years range. Also 31% had no formal education indicating a relatively high level of illiteracy among the fisherfolks while majority of the respondents practice fishing activities using paddle and canoe. It was similarly discovered from the study that the most pressing problems of the fisherfolks is the lack of basic social amenities like electricity, potable water, access roads, hospitals and markets. It is therefore recommended that basic social infrastructures be provided for the artisanal fishing communities in order to improve their social welfare, standard of living and the capacity to have a sustainable fishing occupation in the interest of food security and poverty alleviation
Resumo:
Artisanal Fish Societies constitutes one of the poorest societies in the developing world. Attempts to harness the potentials of such societies have often failed due to the enormity of the problem of poverty. This study was conducted in four major fishing villages namely: Abule Titun, Apojola, Imala Odo and Ibaro in order to investigate the occupational practices and the problems of rural artisanal fisherfolks in Oyam's Dam, area of Ogun State. Eighty respondents were randomly selected among the artisanal fisher folks for interview using interview guide. The findings revealed that 43.8% of the fisherfolks are within active age range of 31-40 years while 30% are within 21-30 years range. Also 31% had no formal education indicating a relatively high level of illiteracy among the fisherfolks while majority of the respondents practice fishing activities using paddle and canoe. It was similarly discovered from the study that the most pressing problems of the fishfolks is the lack of basic social amenities like electricity, potable water, access roads, hospital and markets. It is therefore recommended that basic social infrastructures be provided for the artisanal fishing communities in order to improve their social welfare, standard of living and the capacity to have a sustainable fishing occupation in the interest of food security and poverty alleviation
Resumo:
In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.
The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.
Resumo:
This work concerns itself with the possibility of solutions, both cooperative and market based, to pollution abatement problems. In particular, we are interested in pollutant emissions in Southern California and possible solutions to the abatement problems enumerated in the 1990 Clean Air Act. A tradable pollution permit program has been implemented to reduce emissions, creating property rights associated with various pollutants.
Before we discuss the performance of market-based solutions to LA's pollution woes, we consider the existence of cooperative solutions. In Chapter 2, we examine pollutant emissions as a trans boundary public bad. We show that for a class of environments in which pollution moves in a bi-directional, acyclic manner, there exists a sustainable coalition structure and associated levels of emissions. We do so via a new core concept, one more appropriate to modeling cooperative emissions agreements (and potential defection from them) than the standard definitions.
However, this leaves the question of implementing pollution abatement programs unanswered. While the existence of a cost-effective permit market equilibrium has long been understood, the implementation of such programs has been difficult. The design of Los Angeles' REgional CLean Air Incentives Market (RECLAIM) alleviated some of the implementation problems, and in part exacerbated them. For example, it created two overlapping cycles of permits and two zones of permits for different geographic regions. While these design features create a market that allows some measure of regulatory control, they establish a very difficult trading environment with the potential for inefficiency arising from the transactions costs enumerated above and the illiquidity induced by the myriad assets and relatively few participants in this market.
It was with these concerns in mind that the ACE market (Automated Credit Exchange) was designed. The ACE market utilizes an iterated combined-value call market (CV Market). Before discussing the performance of the RECLAIM program in general and the ACE mechanism in particular, we test experimentally whether a portfolio trading mechanism can overcome market illiquidity. Chapter 3 experimentally demonstrates the ability of a portfolio trading mechanism to overcome portfolio rebalancing problems, thereby inducing sufficient liquidity for markets to fully equilibrate.
With experimental evidence in hand, we consider the CV Market's performance in the real world. We find that as the allocation of permits reduces to the level of historical emissions, prices are increasing. As of April of this year, prices are roughly equal to the cost of the Best Available Control Technology (BACT). This took longer than expected, due both to tendencies to mis-report emissions under the old regime, and abatement technology advances encouraged by the program. Vve also find that the ACE market provides liquidity where needed to encourage long-term planning on behalf of polluting facilities.
Resumo:
There are over 2,300 lakes over 1 km2 in China (total area 80 000 km2). In addition there are approximately 87 000 reservoirs with a storage capacity of 413 billion m3. These form the main supply of drinking water as well as water for industrial and agricultural production and aquaculture. Because of a lack of understanding of the frailty of lake ecosystems and poor environmental awareness, human activities have greatly affected freshwater systems. This article focuses on the problems of one water supply reservoir, Dalangdian Reservoir, and considers options for improving its management. Dalangdian Reservoir is described and occurrence of algal genera given. The authors conclude with remarks on the future of the Dalangdian Reservoir.
Resumo:
In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.
Resumo:
Interest in the possible applications of a priori inequalities in linear elasticity theory motivated the present investigation. Korn's inequality under various side conditions is considered, with emphasis on the Korn's constant. In the "second case" of Korn's inequality, a variational approach leads to an eigenvalue problem; it is shown that, for simply-connected two-dimensional regions, the problem of determining the spectrum of this eigenvalue problem is equivalent to finding the values of Poisson's ratio for which the displacement boundary-value problem of linear homogeneous isotropic elastostatics has a non-unique solution.
Previous work on the uniqueness and non-uniqueness issue for the latter problem is examined and the results applied to the spectrum of the Korn eigenvalue problem. In this way, further information on the Korn constant for general regions is obtained.
A generalization of the "main case" of Korn's inequality is introduced and the associated eigenvalue problem is a gain related to the displacement boundary-value problem of linear elastostatics in two dimensions.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.