943 resultados para Plasma-membrane Domains
Resumo:
Minimal toxicity data are available for 1-alkylquinolinium bromide ionic liquids. Here, their toxicity to NIH 3T3 murine fibroblast cells, of relevance to their potential antimicrobial application, is presented. Toxicity data, presented by time-point analysis with a particular focus on the immediate toxicity upon short term cellular exposure, indicate a link between the length of the alkyl chain substituent and resultant biological toxicity. 1-Tetradecylquinolinium bromide was found to exhibit cellular toxicity comparable to benzalkonium chloride over all time points tested. By comparison, 1-octylquinolinium bromide initially exerted significantly lower cytotoxicity at one hour; however, toxicity was found to have a cumulative effect over time-course analysis up to three days. This illustrates that alkyl chain components may govern not only overall toxicity, but also the rate of toxicity. Fluorescence microscopy was utilised to examine destabilisation of the plasma membrane by 1 tetradecylquinolinium bromide and benzalkonium chloride after one hour, with membrane destabilisation not observed for 1-octylquinolinium bromide, or the base constituent quinoline.
Resumo:
A study has been carried out to determine whether the action of triclabendazole (TCBZ) against the liver fluke, Fasciola hepatica is altered by inhibition of the cytochrome P450 (CYP 450)-mediated drug metabolism pathway. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for these experiments, the basic design of which is given in the paper by Devine et al. (2010a). Piperonyl butoxide (PB) was the CYP P450 inhibitor used. Morphological changes resulting from drug treatment and following metabolic inhibition were assessed by means of transmission electron microscopy. After treatment with either TCBZ or TCBZ.SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with PB+TCBZ, but more particularly PB+TCBZ.SO, led to greater changes to the TCBZ-resistant isolate than with each drug on its own, with blebbing of the apical plasma membrane, severe swelling of the basal infolds and their associated mucopolysaccharide masses in the syncytium and flooding in the internal tissues. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis and production of secretory bodies were badly disrupted. The mitochondria were swollen throughout the tegumental system and the somatic muscle blocks were disrupted. With the TCBZ-susceptible Cullompton isolate, there was a limited increase in drug action following co-incubation with PB. The results provide evidence that the condition of a TCBZ-resistant fluke can be altered by inhibition of drug metabolism. Moreover, they support the concept that altered drug metabolism contributes to the mechanism of resistance to TCBZ
Resumo:
PURPOSE: To investigate the role of feedback by Ca²?-sensitive plasma-membrane ion channels in endothelin 1 (Et1) signaling in vitro and in vivo. Methods. Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using two-dimensional (2-D) confocal laser microscopy. Vasoconstrictor responses to intravitreal injections of Et1 were recorded in the absence and presence of appropriate ion channel blockers using fluorescein angiograms imaged using a confocal scanning laser ophthalmoscope. Results. Et1 (10 nM) increased both basal [Ca²?](i) and the amplitude and frequency of Ca²?-waves in retinal arterioles. The Ca²?-activated Cl?-channel blockers DIDS and 9-anthracene carboxylic acid (9AC) blocked Et1-induced increases in wave frequency, and 9AC also inhibited the increase in amplitude. Iberiotoxin, an inhibitor of large conductance (BK) Ca²?-activated K?-channels, increased wave amplitude in the presence of Et1 but had no effect on frequency. None of these drugs affected basal [Ca²?](i). The voltage-operated Ca²?-channel inhibitor nimodipine inhibited wave frequency and amplitude and also lowered basal [Ca²?](i) in the presence of Et1. Intravitreal injection of Et1 caused retinal arteriolar vasoconstriction. This was inhibited by DIDS but not by iberiotoxin or penitrem A, another BK-channel inhibitor. Conclusions. Et1 evokes increases in the frequency of arteriolar Ca²?-waves in vitro, resulting in vasoconstriction in vivo. These responses, initiated by release of stored Ca²?, also require positive feedback via Ca²?-activated Cl?-channels and L-type Ca²?-channels.
Resumo:
Ultrastructural changes to the tegument of 5-week-old, 3-week-old and freshly-excysted Fasciola hepatica following in vitro incubation with the deacetylated (amine) metabolite of diamphenethide (DAMD, 10 mu gml(-1)) were examined by transmission electron microscopy, A similar sequence of tegumental changes occurred in all three age groups of fluke, although, with increasing fluke age, the time before onset increased and the damage became more extensive. The 5-week-old flukes showed an initial stress response after 3 h, typified by blebbing of the apical plasma membrane, formation of microvilli and an accumulation and accelerated release of secretory bodies at the tegumental apex, as well as swelling of the basal infolds, The swelling increased in extent with progressively longer periods of incubation in DAMD, leading to extreme edema and sloughing of the tegument after 9 h. The 3-week-old flukes showed a stress response and swelling of the basal infolds after only 1.5 h, although sloughing of the tegument did not occur until after 9 h. In the freshly-excysted metacercaria, a stress response and some sloughing of the tegument were evident after only 0.5 h. At all stages of development, the ventral tegument was more severely affected than the dorsal, Changes also occurred to the tegumental cells which were indicative of a disruption in the synthesis and release of tegumental secretory bodies: the amount of GER became reduced, the cisternae became swollen and their ribosomal covering decreased, the Golgi complexes disappeared from the cells and the numbers of secretory bodies in the cells also decreased, The heterochromatin content of the nuclei increased and eventually the tegumental cells began to break down, Again, the changes became apparent more rapidly at the earlier stages of development. The ultrastructural changes to the tegument are linked to a possible mode of action for diamphenethide as an inhibitor of protein synthesis. In turn, the results may help to explain the drug's high efficacy against juvenile stages of F. hepatica.
Resumo:
The effect of the microfilament inhibitor cytochalasin B (10 and 100-mu-g/ml) on the ultrastructure of adult Fasciola hepatica was determined in vitro by scanning and transmission electron microscopy (SEM, TEM) using both intact flukes and tissue-slice material. SEM revealed that initial swelling of the tegument led to surface blebbing and limited areas of sloughing after 24 h treatment at 100-mu-g/ml. In the tegumental syncytium, basal accumulations of secretory bodies (especially T2s) were evident in the earlier time periods but declined with longer incubations, until few secretory bodies remained in the syncytium overall. Blebbing of the apical plasma membrane and occasional areas of breakdown and sloughing of the tegument were observed over longer periods of treatment at 100-mu-g/ml. In the tegumental cell bodies, the Golgi complexes gradually decreased in size and activity, and few secretory bodies were produced. In the later time periods, the cells assumed abnormal shapes, the cytoplasm shrinking in towards the nucleus. In the vitelline follicles, a random dispersion of shell protein globules was evident within the intermediate-type cells, rather than their being organized into distinct shell globule clusters. Disruption of this process was more severe at the higher concentration of 100-mu-g/ml and again was more evident in tissue-slice material. In the latter, after prolonged (12 h) exposure to cytochalasin B, the intermediate and mature vitelline cells were filled with loosely packed and expanded shell globule clusters, containing few shell protein globules. The mature vitelline cells continued to lay down "yolk" globules and glycogen deposits. Disruption of the network of processes from the nurse cells was evident at the higher concentration of cytochalasin. Spaces began to appear between the vitelline cells and grew larger with progressively longer incubation periods, and the cells themselves assumed abnormal shapes. A number of binucleate stem cells were observed in tissue-slice material at the longest incubation period (12 h).
Resumo:
Undecaprenyl phosphate (Und-P) is a universal lipid carrier of glycan biosynthetic intermediates for carbohydrate polymers that are exported to the bacterial cell envelope. Und-P arises from the dephosphorylation of undecaprenyl pyrophosphate (Und-PP) molecules produced by de novo synthesis and also from the recycling of released Und-PP after the transfer of the glycan component to other acceptor molecules. The latter reactions take place at the periplasmic side of the plasma membrane, while cytoplasmic enzymes catalyse the de novo synthesis. Four Und-PP pyrophosphatases were recently identified in Escherichia coli. One of these, UppP (formerly BacA), accounts for 75 % of the total cellular Und-PP pyrophosphatase activity and has been suggested to participate in the Und-P de novo synthesis pathway. Unlike UppP, the other three pyrophosphatases (YbjG, YeiU and PgpB) have a typical acid phosphatase motif also found in eukaryotic dolichyl-pyrophosphate-recycling pyrophosphatases. This study shows that double and triple deletion mutants in the genes uppP and ybjG, and uppP, ybjG and yeiU, respectively, are supersensitive to the Und-P de novo biosynthesis inhibitor fosmidomycin. In contrast, single or combined deletions including pgpB have no effect on fosmidomycin supersensitivity. Experimental evidence is also presented that the acid phosphatase motifs of YbjG and YeiU face the periplasmic space. Furthermore, the quadruple deletion mutant DeltauppP-DeltaybjG-DeltayeiU-DeltawaaL has a growth defect and abnormal cell morphology, suggesting that accumulation of unprocessed Und-PP-linked O antigen polysaccharides is toxic for these cells. Together, the results support the notion that YbjG, and to a lesser extent YeiU, exert their enzymic activity on the periplasmic side of the plasma membrane and are implicated in the recycling of periplasmic Und-PP molecules.
Resumo:
Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex.
Resumo:
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.
Resumo:
The O antigen is the most surface-exposed component of the lipopolysaccharide (LPS) molecule and its biogenesis involves several complex mechanisms not completely well understood. All of these mechanisms involve biochemical reactions that occur on the cytoplasmic side of the plasma membrane as well as several different translocation pathways that deliver the nascent O antigens in a glycolipid form to the periplasmic side of the plasma membrane. This article discusses our current understanding of the mechanisms operating in the biogenesis of the O-specific LPS.
Resumo:
We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.
Resumo:
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Resumo:
We previously reported the identification of a novel family of immunomodulatory proteins, termed helminth defense molecules (HDMs), that are secreted by medically important trematode parasites. Since HDMs share biochemical, structural, and functional characteristics with mammalian cathelicidin-like host defense peptides (HDPs), we proposed that HDMs modulate the immune response via molecular mimicry of host molecules. In the present study, we report the mechanism by which HDMs influence the function of macrophages. We show that the HDM secreted by Fasciola hepatica (FhHDM-1) binds to macrophage plasma membrane lipid rafts via selective interaction with phospholipids and/or cholesterol before being internalized by endocytosis. Following internalization, FhHDM-1 is rapidly processed by lysosomal cathepsin L to release a short C-terminal peptide (containing a conserved amphipathic helix that is a key to HDM function), which then prevents the acidification of the endolysosomal compartments by inhibiting vacuolar ATPase activity. The resulting endolysosomal alkalization impedes macrophage antigen processing and prevents the transport of peptides to the cell surface in conjunction with MHC class II for presentation to CD4(+) T cells. Thus, we have elucidated a novel mechanism by which helminth pathogens alter innate immune cell function to assist their survival in the host.-Robinson, M. W., Alvarado, R., To, J., Hutchinson, A. T., Dowdell, S. N., Lund, M., Turnbull, L., Whitchurch, C. B., O'Brien, B. A., Dalton, J. P., Donnelly, S. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase.
Resumo:
Galectin-9 expression in endothelial cells can be induced in response to inflammation. However, the mechanism of its expression remains unclear. In this study, we found that interferon-? (IFN-?) induced galectin-9 expression in human endothelial cells in a time-dependent manner, which coincided with the activation of histone deacetylase (HDAC). When endothelial cells were treated with the HDAC3 inhibitor, apicidin, or shRNA-HDAC3 knockdown, IFN-?-induced galectin-9 expression was abolished. Overexpression of HDAC3 induced the interaction between phosphoinositol 3-kinase (PI3K) and IFN response factor 3 (IRF3), leading to IRF3 phosphorylation, nuclear translocation, and galectin-9 expression. HDAC3 functioned as a scaffold protein for PI3K/IRF3 interaction. In addition to galectin-9 expression, IFN-? also induced galectin-9 location onto plasma membrane, which was HDAC3-independent. Importantly, HDAC3 was essential for the constitutive transcription of PI3K and IRF3, which might be responsible for the basal level of galectin-9 expression. The phosphorylation of IRF3 was essential for galectin-9 expression. This study provides new evidence that HDAC3 regulates galectin-9 expression in endothelial cells via interaction with PI3K-IRF3 signal pathway.
Resumo:
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic gram-negative pathogen that causes respiratory infections and is associated with progression of respiratory diseases. Cigarette smoke is a main risk factor for development of respiratory infections and chronic respiratory diseases. Glucocorticoids, which are anti-inflammatory drugs, are still the most common therapy for these diseases. Alveolar macrophages are professional phagocytes that reside in the lung and are responsible for clearing infections by the action of their phagolysosomal machinery and promotion of local inflammation. In this study, we dissected the interaction between NTHI and alveolar macrophages and the effect of cigarette smoke on this interaction. We showed that alveolar macrophages clear NTHI infections by adhesion, phagocytosis, and phagolysosomal processing of the pathogen. Bacterial uptake requires host actin polymerization, the integrity of plasma membrane lipid rafts, and activation of the phosphatidylinositol 3-kinase (PI3K) signaling cascade. Parallel to bacterial clearance, macrophages secrete tumor necrosis factor alpha (TNF-alpha) upon NTHI infection. In contrast, exposure to cigarette smoke extract (CSE) impaired alveolar macrophage phagocytosis, although NTHI-induced TNF-alpha secretion was not abrogated. Mechanistically, our data showed that CSE reduced PI3K signaling activation triggered by NTHI. Treatment of CSE-exposed cells with the glucocorticoid dexamethasone reduced the amount of TNF-alpha secreted upon NTHI infection but did not compensate for CSE-dependent phagocytic impairment. The deleterious effect of cigarette smoke was observed in macrophage cell lines and in human alveolar macrophages obtained from smokers and from patients with chronic obstructive pulmonary disease.
Resumo:
Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study.