984 resultados para Plant Community
Resumo:
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.
Resumo:
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5.Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.
Resumo:
Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.
Resumo:
Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^
Resumo:
Disturbances alter competitive hierarchies by reducing populations and altering resource regimes. The interaction between disturbance and resource availability may strongly influence the structure of plant communities, as observed in the recolonization of seagrass beds in outer Florida Bay that were denuded by sea-urchin overgrazing. There is no consensus concerning the interaction between disturbance and resource availability on competition intensity (CI). On the other hand, species diversity is dependent on both factors. Peaks in species diversity have been observed to occur when both resource availability and disturbance intensity are high, thus implying that CI is low. Based on this supposition of previous models, I presented the resource-disturbance hypothesis as a graphical model to make predictions of CI as a function of both disturbance intensity and the availability of a limiting resource. The predictions of this model were tested in two experiments within a seagrass community in south Florida, in which transplants of Halodule wrightii were placed into near-monocultures of Syringodium filiforme in a full-factorial array. In the first experiment, two measures of relative CI were calculated based on the changes in the short-shoot number (SS) and of rhizome length (RHL) on the transplants. Both light and disturbance were identified as important factors, though the interaction between light * disturbance was not significant. Relative CISS ranged between 0.2 and 1.0 for the high light and high disturbance treatments and the relative CIRHL < 0 for the same treatments, though results were not significantly different due to high variability and low sample size. These results, including a contour schematic using six data points from the different treatment combinations, preliminarily suggests that the resource-disturbance hypothesis may be used may be used as a next step in developing our understanding of the mechanisms involved in structuring plant communities. Furthermore, the focus of the model is on the outcome of CI, which may be a useful predictor of changes in species diversity. Further study is needed to confirm the results of this study and validate the usefulness of this model in other systems. ^
Resumo:
The importance of resource supply and herbivory in driving competitive interactions among species has been an important but contentious issue within ecology. These variables exhibit different effects on species competition when manipulated in isolation but interact when manipulated together. I tested the direct and interactive effects of nutrient addition and simulated grazing (clipping) on the competitive performance of primary producers and community structure of a seagrass bed in South Florida. One square meter experimental plots were established in a mixed seagrass meadow from August 2007 to July 2009. The experiment was a 3 x 3 factorial experiment: 3 fertility treatments: control, medium (2.4 mg N d−1 and 80 µg P day −1) and high (4.8 mg N d−1 and 160 µg P day−1) x 3 clipping intensities (0, 25% and 50 % biomass removal (G)) x 5 replicates for each treatment = 45 plots). Nutrient additions and simulated grazing were done every two months. Fertilization and simulated grazing decreased sexual reproduction in S. filiforme. Fertilization increased competitive dominance within the primary producers while simulated grazing counteracted this effect by removal of the dominant species. Fertilization ameliorated the negative impacts of simulated grazing while simulated grazing prevented competitive exclusion in the fertilized plots. Nutrient addition and simulated grazing both exerted strong control on plant performance and community structure. Neither bottom up nor top down influences was eliminated in treatments where both factors where present. The effects of fertilization on plant performance were marked under all clipping intensities indicating that the system is regulated by nutrient availability both in the presence or absence of grazers. Clipping effects were strong under both fertilized and unfertilized conditions indicating that the seagrass bed can be simultaneously under top-down control by grazers.
Resumo:
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.
Resumo:
The Everglades freshwater marl prairie is a dynamic and spatially heterogeneous landscape, containing thousands of tree islands nested within a marsh matrix. Spatial processes underlie population and community dynamics across the mosaic, especially the balance between woody and graminoid components, and landscape patterns reflect interactions among multiple biotic and abiotic drivers. To better understand these complex, multi-scaled relationships we employed a three-tiered hierarchical design to investigate the effects of seed source, hydrology, and more indirectly fire on the establishment of new woody recruits in the marsh, and to assess current tree island patterning across the landscape. Our analyses were conducted at the ground level at two scales, which we term the micro- and meso-scapes, and results were related to remotely detected tree island distributions assessed in the broader landscape, that is, the macro-scape. Seed source and hydrologic effects on recruitment in the micro- and meso-scapes were analyzed via logistic regression, and spatial aggregation in the macro-scape was evaluated using a grid-based univariate O-ring function. Results varied among regions and scales but several general trends were observed. The patterning of adult populations was the strongest driver of recruitment in the micro- and meso-scape prairies, with recruits frequently aggregating around adults or tree islands. However in the macro-scape biologically associated (second order) aggregation was rare, suggesting that emergent woody patches are heavily controlled by underlying physical and environmental factors such as topography, hydrology, and fire.
Resumo:
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.
Resumo:
Models of community regulation commonly incorporate gradients of disturbance inversely related to the role of biotic interactions in regulating intermediate trophic levels. Higher trophic-level organisms are predicted to be more strongly limited by intermediate levels of disturbance than are the organisms they consume. We used a manipulation of the frequency of hydrological disturbance in an intervention analysis to examine its effects on small-fish communities in the Everglades, USA. From 1978 to 2002, we monitored fishes at one long-hydroperiod (average 350 days) and at one short-hydroperiod (average 259 days; monitoring started here in 1985) site. At a third site, managers intervened in 1985 to diminish the frequency and duration of marsh drying. By the late 1990s, the successional dynamics of density and relative abundance at the intervention site converged on those of the long-hydroperiod site. Community change was manifested over 3 to 5 years following a dry-down if a site remained inundated; the number of days since the most recent drying event and length of the preceding dry period were useful for predicting population dynamics. Community dissimilarity was positively correlated with the time since last dry. Community dynamics resulted from change in the relative abundance of three groups of species linked by life-history responses to drought. Drought frequency and intensity covaried in response to hydrological manipulation at the landscape scale; community-level successional dynamics converged on a relatively small range of species compositions when drought return-time extended beyond 4 years. The density of small fishes increased with diminution of drought frequency, consistent with disturbance-limited community structure; less-frequent drying than experienced in this study (i.e., longer return times) yields predator-dominated regulation of small-fish communities in some parts of the Everglades.
Resumo:
Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.
Resumo:
Treatment of agricultural biodegradable wastes and by-products can be carried out using composting or vermicomposting, or a combination of both treatment methods, to create a growing medium amendment suitable for horticultural use. When compared to traditional compost-maturation, vermicompost-maturation resulted in a more mature growing medium amendment i.e. lower C/N and pH, with increased nutrient content and improved plant growth response, increasing lettuce shoot fresh and dry weight by an average of 15% and 14%, respectively. Vermicomposted horse manure compost was used as a growing medium amendment for lettuce and was found to significantly increase lettuce shoot and root growth, and chlorophyll content. When used as a growing medium amendment for tomato fruit production, vermicomposted spent mushroom compost increased shoot growth and marketable yield, and reduced blossom end rot in two independent studies. Vermicompost addition to peat-based growing media increased marketable yield by an average of 21%. Vermicompost also improved tomato fruit quality parameters such as acidity and sweetness. Fruit sweetness, as measured using Brix value, was significantly increased in fruits grown with 10% or 20% vermicompost addition by 0.2 in truss one and 0.3 in truss two. Fruit acidity (% citric acid) was significantly increased in plants grown with vermicompost by an average of 0.65% in truss one and 0.68% in truss two. These changes in fruit chemical parameters resulted in a higher tomato fruit overall acceptability rating as determined by a consumer acceptance panel. When incorporated into soil, vermicomposted spent mushroom compost increased plant growth and reduced plant stress under conditions of cold stress, but not salinity or heat stress. The addition of 20% vermicompost to cold-stressed plants increased plant growth by an average of 30% and increased chlorophyll fluorescence by an average of 21%. Compared to peat-based growing medium, vermicompost had consistently higher nutrient content, pH, electrical conductivity and bulk density, and when added to a peat-based growing medium, vermicomposted spent mushroom compost altered the microbial community. Vermicompost amendment increased the microbial activity of the growing medium when incorporated initially, and this increased microbial activity was observed for up to four months after incorporation when plants were grown in it. Vermicomposting was shown to be a suitable treatment method for agricultural biodegradable wastes and by-products, with the resulting vermicompost having suitable physical, chemical and biological properties, and resulting in increased plant growth, marketable yield and yield quality, when used as an amendment in peat-based growing medium.
Resumo:
Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils ( model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.