958 resultados para Pin on disc tests
Resumo:
To assess, compare and correlate quantitative T2 and T2* relaxation time measurements of intervertebral discs (IVDs) in patients suffering from low back pain, with respect to the IVD degeneration as assessed by the morphological Pfirrmann Score. Special focus was on the spatial variation of T2 and T2* between the annulus fibrosus (AF) and the nucleus pulposus (NP).
Resumo:
Currently, many pre-conditions are regarded as relative or absolute contraindications for lumbar total disc replacement (TDR). Radiculopathy is one among them. In Switzerland it is left to the surgeon's discretion when to operate if he adheres to a list of pre-defined indications. Contraindications, however, are less clearly specified. We hypothesized that, the extent of pre-operative radiculopathy results in different benefits for patients treated with mono-segmental lumbar TDR. We used patient perceived leg pain and its correlation with physician recorded radiculopathy for creating the patient groups to be compared.
Resumo:
It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.
Resumo:
Coal is an aggregation of vegetal matter with varying small amounts of mineral and animal matter which have been so changed by the processes of sedimentation, decay and metamorphism that it has become a dense, dark, combustible substance. It occurs in beds varying in thickness from one foot or less to over 300 feet. The horizontal extent of a bed is sometimes continuous over an area as large as the State of Montana.
Resumo:
Degeneration of the intervertebral disc, sometimes associated with low back pain and abnormal spinal motions, represents a major health issue with high costs. A non-invasive degeneration assessment via qualitative or quantitative MRI (magnetic resonance imaging) is possible, yet, no relation between mechanical properties and T2 maps of the intervertebral disc (IVD) has been considered, albeit T2 relaxation time values quantify the degree of degeneration. Therefore, MRI scans and mechanical tests were performed on 14 human lumbar intervertebral segments freed from posterior elements and all soft tissues excluding the IVD. Degeneration was evaluated in each specimen using morphological criteria, qualitative T2 weighted images and quantitative axial T2 map data and stiffness was calculated from the load-deflection curves of in vitro compression, torsion, lateral bending and flexion/extension tests. In addition to mean T2, the OTSU threshold of T2 (TOTSU), a robust and automatic histogram-based method that computes the optimal threshold maximizing the distinction of two classes of values, was calculated for anterior, posterior, left and right regions of each annulus fibrosus (AF). While mean T2 and degeneration schemes were not related to the IVDs' mechanical properties, TOTSU computed in the posterior AF correlated significantly with those classifications as well as with all stiffness values. TOTSU should therefore be included in future degeneration grading schemes.
Resumo:
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Resumo:
OBJECTIVE To describe the influence of fenestration at the disc herniation site on recurrence in thoracolumbar disc disease of chondrodystrophoid dogs. STUDY DESIGN Prospective clinical study. ANIMALS Chondrodystrophic dogs (n=19). METHODS Dogs were divided into 2 groups: group 1 (9 dogs) had thoracolumbar disc extrusion (Hansen type I) treated by hemilaminectomy and concomitant fenestration of the affected intervertebral disc and group 2 (10 dogs) had hemilaminectomy without fenestration. All dogs had 3 magnetic resonance imaging (MRI) examinations: preoperatively, immediately postoperatively to assess removal of herniated disc material, and again 6 weeks after surgery. RESULTS There were 13 male and 6 female dogs; mean age, 7.1 years. Thoracolumbar disc herniation was confirmed with MRI. Immediate post surgical MRI revealed that the herniated disc removal was complete in all but 1 dog and that fenestration did not lead to complete removal of nucleus pulposus within the intervertebral disc space. On the 3rd MRI examination, none of the group 1 dogs had further disc material herniation at the fenestrated site. Six of the 10 group 2 dogs had a recurrence of herniation leading to clinical signs in 3 dogs (pain in 2 dogs, paresis in 1 dog). CONCLUSION In thoracolumbar disc herniation, fenestration of the affected intervertebral disc space prevents further extrusion of disc material. CLINICAL RELEVANCE Fenestration reduces the risk of early recurrence of disc herniation and associated postoperative complications.
Resumo:
Background context Studies involving factor analysis (FA) of the items in the North American Spine Society (NASS) outcome assessment instrument have revealed inconsistent factor structures for the individual items. Purpose This study examined whether the factor structure of the NASS varied in relation to the severity of the back/neck problem and differed from that originally recommended by the developers of the questionnaire, by analyzing data before and after surgery in a large series of patients undergoing lumbar or cervical disc arthroplasty. Study design/setting Prospective multicenter observational case series. Patient sample Three hundred ninety-one patients with low back pain and 553 patients with neck pain completed questionnaires preoperatively and again at 3 to 6 and 12 months follow-ups (FUs), in connection with the SWISSspine disc arthroplasty registry. Outcome measures North American Spine Society outcome assessment instrument. Methods First, an exploratory FA without a priori assumptions and subsequently a confirmatory FA were performed on the 17 items of the NASS-lumbar and 19 items of the NASS-cervical collected at each assessment time point. The item-loading invariance was tested in the German version of the questionnaire for baseline and FU. Results Both NASS-lumbar and NASS-cervical factor structures differed between baseline and postoperative data sets. The confirmatory analysis and item-loading invariance showed better fit for a three-factor (3F) structure for NASS-lumbar, containing items on “disability,” “back pain,” and “radiating pain, numbness, and weakness (leg/foot)” and for a 5F structure for NASS-cervical including disability, “neck pain,” “radiating pain and numbness (arm/hand),” “weakness (arm/hand),” and “motor deficit (legs).” Conclusions The best-fitting factor structure at both baseline and FU was selected for both the lumbar- and cervical-NASS questionnaires. It differed from that proposed by the originators of the NASS instruments. Although the NASS questionnaire represents a valid outcome measure for degenerative spine diseases, it is able to distinguish among all major symptom domains (factors) in patients undergoing lumbar and cervical disc arthroplasty; overall, the item structure could be improved. Any potential revision of the NASS should consider its factorial structure; factorial invariance over time should be aimed for, to allow for more precise interpretations of treatment success.