947 resultados para Physical and chemical variables
Resumo:
In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.
Resumo:
The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.
Resumo:
ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: ( I ) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates handling operations such as pumping, transport and disposal. To enhance the dewatering of secondary sludge, the effect of ultrasound waves, thermal treatment and chemical conditioning with NaOH have been studied. Two features of treated sludges were examined: their rheological behavior and their dewaterability. The rheological tests consisted of recording shear stress when the shear rate increases and decreases continuously and linearly with time, and when it increases and decreases in steps. Steady-state viscosity and thixotropy were obtained from the rheological tests, and both decreased significantly in all cases with increased treatment intensity. Centrifugation of ultrasonicated and thermally treated sludges allowed the total solid content to be increased by approximately 16.2% and 17.6%, respectively. These dewatered sludges had a lower viscosity and thixotropy than the untreated sludge. In contrast, alkali conditioning barely allowed the sludge to be dewatered by centrifugation, despite decreasing its viscosity and thixotropy.
Resumo:
This minireview is meant as an introduction to the following paper. To this end, it presents the general background against which the joint paper should be understood. The first objective of the present paper is thus to clarify some concepts and related terminology, drawing a clear distinction between i) atomic diversity (i.e., atomic-property space), ii) molecular or macromolecular diversity (i.e., molecular- or macromolecular-property spaces), and iii) chemical diversity (i.e., chemical-diversity space). The first refers to the various electronic states an atom can occupy. The second encompasses the conformational and property spaces of a given (macro)molecule. The third pertains to the diversity in structure and properties exhibited by a library or a supramolecular assembly of different chemical compounds. The ground is thus laid for the content of the joint paper, which pertains to case ii, to be placed in its broader chemodiversity context. The second objective of this paper is to point to the concepts of chemodiversity and biodiversity as forming a continuum. Chemodiversity is indeed the material substratum of organisms. In other words, chemodiversity is the material condition for life to emerge and exist. Increasing our knowledge of chemodiversity is thus a condition for a better understanding of life as a process.
Resumo:
Few studies have been found that to assess the factors that explain higher levels of familyburden in adults with intellectualdisability (ID) and intellectualdisability and mental disorders (ID-MD). The aims of this study were to assess familyburden in people with ID and ID-MD and to determine which sociodemographic, clinical and functionaldisabilityvariables account for familyburden. The sample is composed of pairs of 203 participants with disability and their caregivers, of which 33.5% are caregivers of people with ID and 66.5% of ID-MD. Assessments were performed using scales of clinical and functionaldisability as the following instruments: Weschler Adult Intelligence Scale-III (WAIS-III), Inventory for Client and Agency Planning (ICAP), Psychiatric Assessment Schedule for Adults with Development Disability (PAS-ADD checklist), Disability Assessment Schedule of the World Health Organization (WHO-DAS-II) and familyburden (Subjective and Objective FamilyBurden Inventory - SOFBI/ECFOS-II). People with ID-MD presented higher levels of functionaldisability than those with ID only. Higher levels of familyburden were related to higher functionaldisability in all the areas (p < 0.006-0.001), lower intelligence quotient (p < 0.001), diagnosis of ID-MD (p < 0.001) and presence of organic, affective, psychotic and behavioral disorders (p < 0.001). Stepwise multiple regression showed that behavioral problems, affective and psychotic disorder, disability in participation in society, disability in personal care and presence of ID-MD explained more than 61% of the variance in familyburden. An integrated approach using effective multidimensional interventions is essential for both people with ID and ID-MD and their caregivers in order to reduce familyburden.
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
The present study tested the effect of a school-based physical activity (PA) program on quality of life (QoL) in 540 elementary school children. First and fifth graders were randomly assigned to a PA program or a no-PA control condition during one academic year. QoL was assessed by the Child Health Questionnaire at baseline and postintervention. Based on mixed linear model analyses, physical QoL in first graders and physical and psychosocial QoL in fifth graders were not affected by the intervention. In first graders, the PA intervention had a positive impact on psychosocial QoL (effect size [d], 0.32; p < .05). Subpopulation analyses revealed that this effect was caused by an effect in urban (effect size [d], 0.38; p < .05) and overweight first graders (effect size [d], 0.45; p < .05). In conclusion, a school-based PA intervention had little effect on QoL in elementary school children.
Resumo:
The main goal of this special issue was to gather contributions dealing with the latest breakthrough methods for providing value compounds and energy/fuel from waste valorization. Valorization is a relatively new approach in the area of industrial wastes management, a key issue to promote sustainable development. In this field, the recovery of value-added substances, such as antioxidants, proteins, vitamins, and so forth, from the processing of agroindustrial byproducts, is worth mentioning. Another important valorization approach is the use of biogas from waste treatment plants for the production of energy. Several approaches involving physical and chemical processes, thermal and biological processes that ensure reduced emissions and energy consumptions were taken into account. The papers selected for this topical issue represent some of the mostly researched methods that currently promote the valorization of wastes to energy and useful materials ...
Resumo:
The main environmental variables determining the community structure and the functioning of Mediterranean shallow lentic ecosystems are described. These ecosystems are characterized by the unpredictability of their water inputs and the high variability in their water level and physical and chemical composition. Variations in flooding, salinity, and water turnover are determinant in species composition and nutrient dynamics. Taxon-based and size-based approaches to the study of the community structure of aquatic organisms that colonise these ecosystems are also compared. The conventional taxonomic approach, based on the determination of species composition, has been used for the identification of patterns in species richness, distribution and temporal dynamics, and for ecological requirements of species and their potential use as ecological indicators. This taxonbased approach has been compared with a size-based approach, where individuals are classified by their size. Size-based approach gives complementary information about community structure and dynamics, especially when communities are dominated by a single species. The use of size diversity combined with species diversity is suggested for a more complete understanding of community structuring in this type of ecosystem. Detailed examples of two Mediterranean shallow lentic ecosystems, the salt marshes of the Empordà wetlands and the Espolla temporary karstic pond, which differ in hydrology and water origin, are used to discuss the suitability of these different approaches
Resumo:
Here we report the case of a 70-year-old woman who committed suicide by cyanide poisoning. During resuscitation cares, she underwent an antidote treatment by hydroxocobalamin. Postmortem investigations showed marked bright pink discolouration of organs and fluids, and a lethal cyanide blood concentration of 43 mg/L was detected by toxicological investigation. Discolouration of hypostasis and organs has widely been studied in forensic literature. In our case, we interpreted the unusual pink coloration as the result of the presence of hydroxocobalamin. This substance is a known antidote against cyanide poisoning, indicated because of its efficiency and poor adverse effects. However, its main drawback is to interfere with measurements of many routine biochemical parameters. We have tested the potential influence of this molecule in some routine postmortem investigations. The results are discussed.
Resumo:
The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).
Resumo:
Over the past two decades, soil ecotoxicologists have made strides in utilizing the basic concepts and advancements in soil zoology and ecology. They have applied the existing tools, and developed new ones to investigate how chemical contamination can affect soil ecosystems, including the degradation or destruction of soil quality and habitats or the diminishment of belowground biodiversity. Soil ecotoxicologists are applying a suite of standard protocols, originally developed as laboratory tests with single chemicals (e.g., pesticides), and further enhancing both the approaches and protocols for the assessment of contaminated lands. However, ecological relevance of some approaches remains unresolved. The authors discuss the main challenges for a coherent ecotoxicological assessment of soil ecosystems amid contaminated lands, and provide recommendations on how to integrate the effects of physical and chemical soil properties, the variations in the diversity of soil invertebrates, and the interactions among organisms of various trophic levels. The review examines new international approaches and test methods using examples from three continents (in particular research conducted in Brazil), and provides recommendations for improving ecological relevance of ecotoxicological investigations of contaminated lands.