957 resultados para Photothermal transparent transducer
Resumo:
It has been proposed that increasing levels of pCO2 in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO2 scenarios (ambient, 550, 750 and 1000 µatm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO2 on DOC production. There was a significant but highly variable effect of pCO2 on the production of TEPs. In three of the five experiments, variation of TEP production between pCO2 treatments was caused by the effect of pCO2 on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO2 (twice as much production over the 96 h incubation period in the 750 ?atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO2 perturbations.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
The photocatalytic activity of self-cleaning glass is assessed using a resazurin (Rz) photocatalyst activity indicator ink, i.e. Rz paii, via both the rate of change in the colour of the ink (blue to pink), R(Abs), and the rate of change in the fluorescence intensity, R(Fl), (λ(excitation) = 593 nm; λ(emission) = 639 nm) of the ink. In both cases the kinetics are zero order. Additional work with a range of glass samples of different photocatalytic activity reveal R(Abs) is directly related to R(Fl), thereby showing that the latter, like the former, can be used to provide a measure of the photocatalytic activity of the sample under test. The measured value of R(Fl) is found to be the same for 5 pieces of, otherwise identical, selfcleaning glass with: black, red, blue, yellow and no coloured tape stuck to their backs, which demonstrates that R(Fl) measurements can be used to measure photocatalytic activity under conditions of high colour and opacity under which R(Abs) cannot be measured. The relevance of this novel, fluorescence-based paii to the assessment of the activity of highly coloured, opaque photocatalytic samples, such as paints and tiles, is discussed briefly.
Resumo:
Effectiveness in achieving mission is fundamental to evaluating charity performance, and is of central concern to stakeholders who fund, regulate and otherwise engage with such organisations. Exploring the meaning of transparency in the context of stakeholder engagement, and utilising previous research and authoritative sector discussion, this paper develops a novel framework of transparent, stakeholder-focused effectiveness reporting. It is contended that such reporting can assist the charity sector in discharging accountability, gaining legitimacy, and in sharpening mission-centred managerial decision making. Then applying this to UK charities’ publicly-available communications, it highlights significant challenges and weaknesses in current effectiveness reporting.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
In this paper the problem of the evolution of an object-oriented database in the context of orthogonal persistent programming systems is addressed. We have observed two characteristics in that type of systems that offer particular conditions to implement the evolution in a semi-transparent fashion. That transparency can further be enhanced with the obliviousness provided by the Aspect-Oriented Programming techniques. Was conceived a meta-model and developed a prototype to test the feasibility of our approach. The system allows programs, written to a schema, access semi-transparently to data in other versions of the schema.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Cooling of the mechanical motion of a GaAs nano-membrane using the photothermal effect mediated by excitons was recently demonstrated by some of the authors (Usami et al 2012 Nature Phys. 8 168) and provides a clear example of the use of thermal forces to cool down mechanical motion. Here, we report on a single-free-parameter theoretical model to explain the results of this experiment which matches the experimental data remarkably well.
Resumo:
A model of far infrared (FIR) dielectric response of shallow impurity states in a semiconductor has been developed and is presented for the specific case of the shallow donor transitions in high purity epitaxial GaAs. The model is quite general, however, and should be applicable with slight modification, not only to shallow donors in other materials such as InP, but also to shallow acceptors and excitons. The effects of the enormous dielectric response of shallow donors on the FIR optical properties of reflectance, transmittance, and absorptance, and photoconductive response of high purity epitaxial GaAs films are predicted and compared with experimental photothermal ionization spectra. The model accounts for many of the peculiar features that are frequently observed in these spectra, one of which was the cause of erroneous donor identifications in the early doping experiments. The model also corrects some commonly held misconceptions concerning photo-thermal ionization peak widths and amplitudes and their relationships to donor and acceptor concentrations. These corrections are of particular relevance to the proper interpretation of photothermal ionization spectra in the study of impurity incorporation in high purity epitaxial material. The model also suggests that the technique of FIR reflectance, although it has not been widely employed, should be useful in the study of shallow impurities in semiconductors.
Resumo:
Optical profilometers based on light reflection may fail at surfaces presenting steep slopes and highly curved features. Missed light, interference and diffraction at steps, peaks and valleys are some of the reasons. Consequently, blind areas or profile artifacts may be observed when using common reflection micro-optical profilometers (confocal, scanning interferometers, etc…). The Topographic Optical Profilometry by Absorption in Fluids (TOPAF) essentially avoids these limitations. In this technique an absorbing fluid fills the gap between a reference surface and the surface to profile. By comparing transmission images at two different spectral bands we obtain a reliable topographic map of the surface. In this contribution we develop a model to obtain the profile under micro-optical observation, where high numerical aperture (NA) objectives are mandatory. We present several analytical and experimental results, validating the technique’s capabilities for profiling steep slopes and highly curved micro-optical surfaces with nanometric height resolution.
Resumo:
Photothermal imaging allows to inspect the structure of composite materials by means of nondestructive tests. The surface of a medium is heated at a number of locations. The resulting temperature field is recorded on the same surface. Thermal waves are strongly damped. Robust schemes are needed to reconstruct the structure of the medium from the decaying time dependent temperature field. The inverse problem is formulated as a weighted optimization problem with a time dependent constraint. The inclusions buried in the medium and their material constants are the design variables. We propose an approximation scheme in two steps. First, Laplace transforms are used to generate an approximate optimization problem with a small number of stationary constraints. Then, we implement a descent strategy alternating topological derivative techniques to reconstruct the geometry of inclusions with gradient methods to identify their material parameters. Numerical simulations assess the effectivity of the technique.
Resumo:
Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.