927 resultados para Permanent magnet synchronous machines
Resumo:
Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
Room-temperature phosphorimetry was used to quantify trace levels of chrysene in sugar-cane spirits and in fish bile. A selective phosphorescence enhancer (AgNO3) and synchronous scanning allowed the detection of ng amounts of chrysene. Accuracy (113 ± 17%) and selectivity was evaluated using the CRM-NIST-1647d - Priority Pollutant Polycyclic Aromatic Hydrocarbons in acetonitrile. Analysis of sugar-cane spirit samples enabled recovery of 108 ± 18% which agreed with the one achieved using HPLC. Method's uncertainty was equivalent to 3.4 ng of the analyte, however, the analyte pre-concentration (SPE) improved sensibility and minimized the relative uncertainty. Characterization and homogeneity studies in fish bile were also performed.
Resumo:
1862/10/15 (A2,N19).
Resumo:
1860/12/01 (A1,N1).
Resumo:
1861/08/01 (A1,N17).
Resumo:
1861/05/15 (A1,N12).
Resumo:
1862/08/30 (A2,N16).
Resumo:
1862/02/15 (A2,N3).
Resumo:
1862/04/15 (A2,N7).
Resumo:
1861/06/01 (A1,N13).
Resumo:
1862/02/28 (A2,N4).
Resumo:
1861/02/01 (A1,N5).
Resumo:
1862/06/30 (A2,N12).
Resumo:
1861/10/01 (A1,N21).