983 resultados para PSYCHROPHILIC BACTERIUM
Resumo:
Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium.
Resumo:
The evolution of cooperation is thought to be promoted by pleiotropy, whereby cooperative traits are coregulated with traits that are important for personal fitness. However, this hypothesis faces a key challenge: what happens if mutation targets a cooperative trait specifically rather than the pleiotropic regulator? Here, we explore this question with the bacterium Pseudomonas aeruginosa, which cooperatively digests complex proteins using elastase. We empirically measure and theoretically model the fate of two mutants-one missing the whole regulatory circuit behind elastase production and the other with only the elastase gene mutated-relative to the wild-type (WT). We first show that, when elastase is needed, neither of the mutants can grow if the WT is absent. And, consistent with previous findings, we show that regulatory gene mutants can grow faster than the WT when there are no pleiotropic costs. However, we find that mutants only lacking elastase production do not outcompete the WT, because the individual cooperative trait has a low cost. We argue that the intrinsic architecture of molecular networks makes pleiotropy an effective way to stabilize cooperative evolution. Although individual cooperative traits experience loss-of-function mutations, these mutations may result in weak benefits, and need not undermine the protection from pleiotropy.
Resumo:
Obligate or facultative intracellular bacteria are fastidious organisms that do not or poorly grow on conventional culture media. Some of them may be the cause of frequent and potentially severe infections, such as tuberculosis (Myco- bacterium tuberculosis), community-acquired respiratory infections (Legionella spp., Mycoplasma pneumoniae, Chlamydia pneumoniae) or blood culture-negative endocarditis (Coxiella burnetii, Bartonella spp., Tropheryma whipplei). The objective of this paper is to provide a comprehensive summary of the available and recommended diagnostic tests for the detection of these fastidious organisms in clinical practice.
Resumo:
Criblamydia sequanensis is an amoeba-resisting bacterium recently isolated from the Seine River. This Chlamydia-related bacterium harbors a genome of approximately 3 Mbp and a megaplasmid of 89,525 bp. The plasmid encodes several efflux systems and an operon for arsenite resistance. This first genome sequence within the Criblamydiaceae family enlarges our view on the evolution and the ecology of this important bacterial clade largely understudied so far.
Resumo:
Waddlia chondrophila, an obligate intracellular bacterium of the Chlamydiales order, is considered as an agent of bovine abortion and a likely cause of miscarriage in humans. Its role in respiratory diseases was questioned after the detection of its DNA in clinical samples taken from patients suffering from pneumonia or bronchiolitis. To better define the role of Waddlia in both miscarriage and pneumonia, a tool allowing large-scale serological investigations of Waddlia seropositivity is needed. Therefore, enriched outer membrane proteins of W. chondrophila were used as antigens to develop a specific ELISA. After thorough analytical optimization, the ELISA was validated by comparison with micro-immunofluorescence and it showed a sensitivity above 85% with 100% specificity. The ELISA was subsequently applied to human sera to specify the role of W. chondrophila in pneumonia. Overall, 3.6% of children showed antibody reactivity against W. chondrophila but no significant difference was observed between children with and without pneumonia. Proteomic analyses were then performed using mass spectrometry, highlighting members of the outer membrane protein family as the dominant proteins. The major Waddlia putative immunogenic proteins were identified by immunoblot using positive and negative human sera. The new ELISA represents an efficient tool with high throughput applications. Although no association with pneumonia and Waddlia seropositivity was observed, this ELISA could be used to specify the role of W. chondrophila in miscarriage and in other diseases.
Resumo:
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora
Resumo:
Lyme borreliosis is a tick-transmitted infection caused by the spirochete bacterium Borrelia burgdorferi sensu lato. The tick injects bacteria into host skin, where a first line defence, mainly the complement system, neutrophils, dendritic cells and macrophages are ready to attack foreign intruders. However, in the case of Lyme borreliosis, the original immune response in the skin is untypically mild among bacterial infections. A further untypical feature is the ability of B. burgdorferi to disseminate to distant organs, where, in some patients, symptoms appear after years after the original infection. This study aimed at uncovering some of the immune evasion mechanisms utilized by B. burgdorferi against the complement system, neutrophils and dendritic cells. B. burgdorferi was shown to inhibit chemotaxis of human neutrophils towards nformyl- methyl-leucyl-phenylalanine (fMLP). Outer surface protein B (OspB) of B. burgdorferi was shown to promote resistance to the attack of the complement system and neutrophil phagocytosis at low complement concentrations. B. burgdorferi was shown to inhibit migration of dendritic cells in vitro towards CCL19 and CCL21 and also in an in vivo model. This effect was shown to be due to the absence of CD38 on the borrelia-stimulated dendritic cell surface. A defect in p38 mitogen-activated-protein-kinase (p38) signaling was linked to defective CD38 expression. A defect in CD38 expression on B. burgdorferi-stimulated neutrophils was also observed. In this study, a number of novel immune evasion strategies utilized by B burgdorferi were chracterized. However, further studies are needed as other immune evasion mechanisms await to be uncovered.
Resumo:
Among the copper sulphides, chalcopyrite (CuFeS2), covellite (CuS) and chalcocite (Cu2S) are the most important source of minerals for copper mining industry. The acknowledge of behaviour of these sulphides related with bacterial leaching process are essential for optimization procedures. Despite of its importance, covellite has not deserved much interest of researchers regarding this matter. In this work it was studied the oxidation of covellite by the chemolithotrophic bacterium Thiobacillus ferrooxidans by using electrochemical techniques, such as open circuit potentials with the time and cyclic voltammetry. The experiments were carried out in acid medium (pH 1.8), containing or not Fe2+ as additional energy source, and in different periods of incubation; chemical controls were run in parallel. The results showed that a sulphur layer is formed spontaneously due the acid attack, covering the sulphide in the initial phase of incubation, blocking the sulphide oxidation. However, the bacterium was capable to oxidize this sulphur layer. In the presence of Fe2+ as supplemental energy source, the corrosion process was facilitated, because ocurred an indirect oxidation of covellite by Fe3+, which was produced by T. ferrooxidans oxidation of the Fe2+ added in the medium.
Resumo:
The comparative QSAR is a tool for validating any statistical model that seems to be reasonable in describing an interaction between a bioactive new chemical entity, BIONCE, and the biological system. In order to deeper the understanding of the relationships and the meaning of parameters within the model it is necessary some kind of lateral validation. This validation can be accomplished by chemical procedures using physicochemical organic reactions and by means of biological systems. In this paper we review some of such comparisons and also present a lateral validation between the same set of antimicrobial hydrazides acting against Saccharomyces cerevisiae yeast and Escherichia coli bacterium cells. QSARs are presented to shed light in this important way of stating that the QSAR model is not the endpoint, but the beginning.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
Resumo:
A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2%) had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.
Resumo:
The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.
Resumo:
This study describes the use of electroporation for transforming Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus (Citrus spp.) canker. It also evaluates the methodology used for this species under different electrical parameters. The bacterium used in the study (Xac 306) was the same strain used for recent complete sequencing of the organism. The use of a plasmid (pUFR047, gentamycin r) is reported here to be able to replicate in cells of Xac. Following the preparation and resuspension of competent cells of Xac at a density of ~4 x 10(10) cfu/ml, in 10% glycerol, and the addition of the replicative plasmid, an electrical pulse was applied to each treatment. Selection of transformants showed a high efficiency of transformation (1.1 x 10(6) transformants/mug DNA), which indicates an effective, and inverse, combination between electrical resistance (50 W) and capacitance (50 µF) for this species, with an electrical field strength of 12.5 kV.cm-1 and 2.7-ms pulse duration. Besides the description of a method for electroporation of Xac 306, this study provides additional information for the use of the technique on studies for production of mutants of this species.