922 resultados para PROPYLENE COPOLYMER
Resumo:
We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
The phase diagram for diblock copolymer melts is evaluated from lattice-based Monte Carlo simulations using parallel tempering, improving upon earlier simulations that used sequential temperature scans. This new approach locates the order-disorder transition (ODT) far more accurately by the occurrence of a sharp spike in the heat capacity. The present study also performs a more thorough investigation of finite-size effects, which reveals that the gyroid (G) morphology spontaneously forms in place of the perforated-lamellar (PL) phase identified in the earlier study. Nevertheless, there still remains a small region where the PL phase appears to be stable. Interestingly, the lamellar (L) phase next to this region exhibits a small population of transient perforations, which may explain previous scattering experiments suggesting a modulated-lamellar (ML) phase.
Resumo:
The excess surface energy of lamellae formed by an ABA triblock copolymer melt oriented parallel to a neutral surface is evaluated using self-consistent field theory (SCFT). Consistent with experiments and previous SCFT calculations, we find a preference for the A-rich domains at the surface, which can only be attributed to the architectural asymmetry between the A and B blocks. The behavior was previously attributed to a loss of bridging configurations that occurs when the B-domain resides at the surface. Here we demonstrate that it is actually the presence of chain ends that reduces the excess surface energy of an A-rich domain relative that of a B-rich domain.
Resumo:
Tethered films of polystyrene-block-poly(methyl methacrylate) copolymers of varying composition and molecular weight were investigated using atomic force microscopy and the observed structures compared with theoretical predictions. Although the experimental results were in qualitative agreement with the theory, there was significant quantitative variation. This was attributed to the presence of solvent in the films prior to and during annealing, a hypothesis supported by new preliminary calculations reported here. Solvent exchange experiments (where a good solvent for both polymer blocks was gradually replaced by a selective solvent), were also performed on the films. This procedure generated textured films in which the structure was defined by miscibility of the polymer blocks with the second solvent.
Resumo:
There has been great interest recently in peptide amphiphiles and block copolymers containing biomimetic peptide sequences due to applications in bionanotechnology. We investigate the self-assembly of the peptide-PEG amphiphile FFFF-PEG5000 containing the hydrophobic sequence of four phenylalanine residues conjugated to PEG of molar mass 5000. This serves as a simple model peptide amphiphile. At very low concentration, association of hydrophobic aromatic phenylalanine residues occurs, as revealed by circular dichroism and UV/vis fluorescence experiments. A critical aggregation concentration associated with the formation of hydrophobic domains is determined through pyrene fluorescence assays. At higher concentration, defined beta-sheets develop as revealed by FTIR spectroscopy and X-ray diffraction. Transmission electron microscopy reveals self-assembled straight fibril structures. These are much shorter than those observed for amyloid peptides, the finite length may be set by the end cap energy due to the hydrophobicity of phenylalanine. The combination of these techniques points to different aggregation processes depending on concentration. Hydrophobic association into irregular aggregates occurs at low concentration, well-developed beta-sheets only developing at higher concentration. Drying of FFFF-PEG5000 solutions leads to crystallization of PEG, as confirmed by polarized optical microscopy (POM), FTIR and X-ray diffraction (XRD). PEG crystallization does not disrupt local beta-sheet structure (as indicated by FTIR and XRD). However on longer lengthscales the beta-sheet fibrillar structure is perturbed because spheruilites from PEG crystallization are observed by POM. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We investigated the condensation of calf thymus DNA by amphiphilic polystyrene(m)-b-poly(l-lysine)(n) block copolymers (PSm-b- PLys(n), m, n = degree of polymerization), using small-angle X-ray scattering, polarized optical microscopy and laser scanning confocal microscopy. Microscopy studies showed that the DNA condenses in the form of fibrillar precipitates, with an irregular structure, due to electrostatic interactions between PLys and DNA. This is not modified by the presence of hydrophobic PS block. Scattering experiments show that the structure of the polyplexes corresponds to a local order of DNA rods which becomes more compact upon increasing n. It can be concluded that for DNA/ PSm-b- PLys(n) polyplexes, the balance between the PLys block length and the excess charge in the system plays an essential role in the formation of a liquid crystalline phase.
Resumo:
The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.
Resumo:
We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).
Resumo:
We study the structure and shear flow behavior of a side-on liquid crystalline triblock copolymer, named PBA-b-PA444-b-PBA (PBA is poly(butyl acrylate) and PA444 is a poly(acrylate) with a nematic liquid crystal side-on mesogen), in the self-assembled lamellar phase and in the disordered phase. Simultaneous oscillatory shear and small-angle X-ray scattering experiments show that shearing PBA-b-PA444-b-PBA at high frequency and strain amplitudes leads to the alignment of the lamellae with normals perpendicular to the shear direction and to the velocity gradient direction, i.e., in the perpendicular orientation. The order-to-disorder transition temperature (T-ODT) is independent of the applied strain, in contrast to results reported in the literature for coil-coil diblock copolymers, which show an increase in T-ODT with shear rate. It is possible that in our system, T-ODT does not depend on the applied strain because the fluctuations are weaker than those present in coil-coil diblock copolymer systems.
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
Nematic and hexagonal columnar liquid crystal phase formation by a PEG-peptide conjugate is reported. The results are relevant to peptide-polymer Conjugates and bionanomaterial self-assembly (with relevance to PEGylated peptides used in therapeutic applications). The use of modified fragments of the amyloid beta peptide is especially interesting with respect to amyloid fibrillization and its control.