801 resultados para PERIPHERAL-VISION
Resumo:
Purpose: Complete achromatopsia is a rare autosomal recessive disease due to CNGA3, CNGB3, GNAT2 and PDE6C mutations. We studied a large consanguineous Tunisian family including twelve individuals.Methods: Ophthalmic evaluation included a full clinical examination, color vision testing, optical coherence tomography and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing.Results: In all affected subjects, acuity ranged from 20/50 to 20/200. Fundus examination was normal except for two patients who had respectively 4 mm and 5 mm diameters of peripheral congenital hypertrophy. Likewise retinal layers exploration by OCT revealed no change in the thickness of the central retina. Color Vision with 100 Hue Farnsworth test described a profound color impairment along all three axes of color vision. The haplotype analysis of GNAT2 markers revealed that all affected offspring were homozygous by descent for the four polymorphic markers. The maximum lod score value, 4.33, confirmed the evidence for linkage to the GNAT2 gene.A homozygous novel nonsense mutation R313X was identified segregating with an identical GNAT2 haplotype in all affected subjects. This mutation could interrupt interaction with photoactivated rhodopsin, resulting in a failure of visual transduction. In fact, ERG showed a clearly abolished photopic b-wave and flicker responses with no residual cone function justifying the severe GNAT2 achromatopsia phenotype.Conclusions: This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and of the largest family with recessive achromatopsia involving GNAT2, thus providing a unique opportunity for genotype phenotype correlation for this extremely rare condition.
Resumo:
Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of more than 20 neoplastic entities derived from mature T cells and natural killer (NK) cells involved in innate and adaptive immunity. With few exceptions these malignancies, which may present as disseminated, predominantly extranodal or cutaneous, or predominantly nodal diseases, are clinically aggressive and have a dismal prognosis. Their diagnosis and classification is hampered by several difficulties, including a significant morphological and immunophenotypic overlap across different entities, and the lack of characteristic genetic alterations for most of them. Although there is increasing evidence that the cell of origin is a major determinant for the delineation of several PTCL entities, however, the cellular derivation of most entities remains poorly characterized and/or may be heterogeneous. The complexity of the biology and pathophysiology of PTCLs has been only partly deciphered. In recent years, novel insights have been gained from genome-wide profiling analyses. In this review, we will summarize the current knowledge on the pathobiological features of peripheral NK/T-cell neoplasms, with a focus on selected disease entities manifesting as tissue infiltrates primarily in extranodal sites and lymph nodes.
Resumo:
PURPOSE: The present study was designed to determine the stimulation intensity necessary for an adequate assessment of central and peripheral components of neuromuscular fatigue of the knee extensors. METHODS: Three different stimulation intensities (100, 120 and 150 % of the lowest intensity evoking a plateau in M-waves and twitch amplitudes, optimal stimulation intensity, OSI) were used to assess voluntary activation level (VAL) as well as M-wave, twitch and doublet amplitudes before, during and after an incremental isometric exercise performed by 14 (8 men) healthy and physically active volunteers. A visual analog scale was used to evaluate the associated discomfort. RESULTS: There was no difference (p > 0.05) in VAL between the three intensities before and after exercise. However, we found that stimulating at 100 % OSI may overestimate the extent of peripheral fatigue during exercise, whereas 150 % OSI stimulations led to greater discomfort associated with doublet stimulations as well as to an increased antagonist co-activation compared to 100 % OSI. CONCLUSION: We recommend using 120 % OSI, as it constitutes a good trade-off between discomfort and reliable measurements.
Resumo:
Doctoral dissertation, University of Turku
Resumo:
Many strategies have been investigated to provide an ideal substitute to treat a nerve gap injury. Initially, silicone conduits were used and more recently conduits fabricated from natural materials such as poly-3-hydroxybutyrate (PHB) showed good results but still have their limitations. Surgically, a new concept optimising harvested autologous nerve graft has been introduced as the single fascicle method. It has been shown that a single fascicle repair of nerve grafting is successful. We investigated a new approach using a PHB strip seeded with Schwann cells to mimic a small nerve fascicle. Schwann cells were attached to the PHB strip using diluted fibrin glue and used to bridge a 10-mm sciatic nerve gap in rats. Comparison was made with a group using conventional PHB conduit tubes filled with Schwann cells and fibrin glue. After 2 weeks, the nerve samples were harvested and investigated for axonal and Schwann cell markers. PGP9.5 immunohistochemistry showed a superior nerve regeneration distance in the PHB strip group versus the PHB tube group (> 10 mm, crossed versus 3.17+/- 0.32 mm respectively, P<0.05) as well as superior Schwann cell intrusion (S100 staining) from proximal (> 10 mm, crossed versus 3.40+/- 0.36 mm, P<0.01) and distal (> 10 mm, crossed versus 2.91+/- 0.31 mm, P<0.001) ends. These findings suggest a significant advantage of a strip in rapidly connecting a nerve gap lesion and imply that single fascicle nerve grafting is advantageous for nerve repair in rats.
Resumo:
The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.
Resumo:
Atherosclerotic peripheral arterial disease (PAD) is often asymptomatic. If symptomatic, patients present intermittent claudication, ischemic rest pain or tissue necrosis. The prevalence of PAD increases with age and affects about 2% of patients at 60 years. Patients with PAD have an increased risk of coronary or cerebro-vascular events. Measure of the ankle-brachial index (ABI) allows early detection of asymptomatic patients, and allows early preventive interventions, in order to reduce their cardio-vascular risk. The most important interventions are smoking cessation, normalisation of blood pressure and lipid levels, and introduction of an antiplatelet agent, such as aspirin 75 to 160 mg/d.
Resumo:
B cells can either differentiate in germinal centers or in extrafollicular compartments of secondary lymphoid organs. Here we show the migration properties of B cells after differentiation in murine peripheral lymph node infected with mouse mammary tumor virus. Naive B cells become activated, infected, and carry integrated retroviral DNA sequences. After production of a retroviral superantigen, the infected B cells receive cognate T cell help and differentiate along the two main differentiation pathways analogous to classical Ag responses. The extrafollicular differentiation peaks on day 6 of mouse mammary tumor virus infection, and the follicular one becomes detectable after day 10. B cells participating in this immune response carry a retroviral DNA marker that can be detected by using semiquantitative PCR. We determined the migration patterns of B cells having taken part in the T cell-B cell interaction from the draining lymph node to different tissues. Waves of immigration and retention of infected cells in secondary lymphoid organs, mammary gland, salivary gland, skin, lung, and liver were observed correlating with the two peaks of B cell differentiation in the draining lymph node. Other organs revealed immigration of infected cells at later time points. The migration properties were correlated with a strong up-regulation of alpha(4)beta(1) integrin expression. These results show the migration properties of B cells during an immune response and demonstrate that a large proportion of extrafolliculary differentiating plasmablasts can escape local cell death and carry the retroviral infection to peripheral organs.
Resumo:
The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat with a mutated Lpin1 gene (Lpin11Hubr ), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin11Hubr rats are characterized by hindlimb paralysis that is detectable from the second postnatal week. Sequencing of Lpin1 identified a missense mutation in the 5'-end splice site of exon 18 resulting in mis-splicing, a reading frame shift and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. As a consequence, Lpin11Hubr rats develop hypomyelination rather than the pronounced demyelination defect characteristic of Lpin1fld/fld mice, which carry a null allele for Lpin1. Furthermore, histological and molecular analyses revealed that this lesion improve in older Lpin11Hubr rats as compared to young Lpin11Hubr rats and Lpin1fld/fld mice. The observed differences between the murine Lpin1fld/fld mutant, with a complete loss of Lipin 1 function, and the Lpin1Hubr rat, with a truncated PAP1 activitydeficient form of Lipin 1, provide additional evidence for suggested non-enzymatic Lipin1 function residing outside of its PAP1 domain. While we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into pathogenicity of recently identified human Lpin1 mutations. *These authors contributed equally.
Resumo:
The rapid evolution of revascularization techniques has allowed an improvement in quality of life of patients with peripheral artery disease. The angiological follow-up aims to insure durable results of revascularization, to diminish risk of amputation and to limit progression of atheroma plaques. The patient history and physical examination are essential in evaluating impact of peripheral artery disease upon quality of life and insuring the appropriate control of cardiovascular risk factors.
Resumo:
Although autologous nerve graft is still the first choice strategy in nerve reconstruction, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to improve nerve regeneration. Nerve fibrin conduits were seeded with various cell types: primary Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC). Two further control groups were fibrin conduits without cells and autografts. Conduits were used to bridge a 1 cm rat sciatic nerve gap in a long term experiment (16 weeks). Functional and morphological properties of regenerated nerves were investigated. A reduction in muscle atrophy was observed in the autograft and in all cell-seeded groups, when compared with the empty fibrin conduits. SC showed significant improvement in axon myelination and average fiber diameter of the regenerated nerves. dASC were the most effective cell population in terms of improvement of axonal and fiber diameter, evoked potentials at the level of the gastrocnemius muscle and regeneration of motoneurons, similar to the autografts. Given these results and other advantages of adipose derived stem cells such as ease of harvest and relative abundance, dASC could be a clinically translatable route towards new methods to enhance peripheral nerve repair.