981 resultados para Orthogonal Arrays
Resumo:
Tetrapeptide analogue H-[Glu-Ser-Lys(Thz)]-OH, containing a turn-inducing thiazole constraint, was used as a template to produce a 21-membered structurally characterized loop by linking Glu and Lys side chains with a Val-Ile dipeptide. This template was oligomerized in one pot to a library (cyclo-[1](n), n = 2-10) of giant symmetrical macrocycles (up to 120-membered rings), fused to 2-10 appended loops that were carried intact through multiple oligomerization (chain extension) and cyclization (chain terminating) reactions of the template. A three-dimensional solution structure for cyclo-[1](3) shows all three appended loops projecting from the same face of the macrocycle. This is a promising approach to separating pepticle motifs over large distances.
Resumo:
A multichannel spherical speaker array allows, together with a spherical microphones array, the measurement of the MIMO (Multiple Input Multiple Output) acoustic impulse response of an environment capturing meaningful information about propagation of sound between source an receiver. The mathematical framework for extracting arbitrary directivity virtual microphones from real microphones array signals is recalled and the application of the same method to the speakers array to generate arbitrary directivity source is presented. A convenient solutions for the construction and calibration of speakers spherical array for measurement purposes is illustrated. The postprocessing technique developed to compute and visualize acoustic path between source and receiver from measured MIMO impulse response is discussed. Real word results from measurement in a small theater are shown.
Resumo:
We present a theory of coherent propagation and energy or power transfer in a low-dimension array of coupled nonlinear waveguides. It is demonstrated that in the array with nonequal cores (e.g., with the central core) stable steady-state coherent multicore propagation is possible only in the nonlinear regime, with a power-controlled phase matching. The developed theory of energy or power transfer in nonlinear discrete systems is rather generic and has a range of potential applications including both high-power fiber lasers and ultrahigh-capacity optical communication systems. © 2012 American Physical Society.
Resumo:
Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.
Resumo:
It is well known that optic flow - the smooth transformation of the retinal image experienced by a moving observer - contains valuable information about the three-dimensional layout of the environment. From psychophysical and neurophysiological experiments, specialised mechanisms responsive to components of optic flow (sometimes called complex motion) such as expansion and rotation have been inferred. However, it remains unclear (a) whether the visual system has mechanisms for processing the component of deformation and (b) whether there are multiple mechanisms that function independently from each other. Here, we investigate these issues using random-dot patterns and a forced-choice subthreshold summation technique. In experiment 1, we manipulated the size of a test region that was permitted to contain signal and found substantial spatial summation for signal components of translation, expansion, rotation, and deformation embedded in noise. In experiment 2, little or no summation was found for the superposition of orthogonal pairs of complex motion patterns (eg expansion and rotation), consistent with probability summation between pairs of independent detectors. Our results suggest that optic-flow components are detected by mechanisms that are specialised for particular patterns of complex motion.
Resumo:
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Resumo:
Vision must analyze the retinal image over both small and large areas to represent fine-scale spatial details and extensive textures. The long-range neuronal convergence that this implies might lead us to expect that contrast sensitivity should improve markedly with the contrast area of the image. But this is at odds with the orthodox view that contrast sensitivity is determined merely by probability summation over local independent detectors. To address this puzzle, I aimed to assess the summation of luminance contrast without the confounding influence of area-dependent internal noise. I measured contrast detection thresholds for novel Battenberg stimuli that had identical overall dimensions (to clamp the aggregation of noise) but were constructed from either dense or sparse arrays of micro-patterns. The results unveiled a three-stage visual hierarchy of contrast summation involving (i) spatial filtering, (ii) long-range summation of coherent textures, and (iii) pooling across orthogonal textures. Linear summation over local energy detectors was spatially extensive (as much as 16 cycles) at Stage 2, but the resulting model is also consistent with earlier classical results of contrast summation (J. G. Robson & N. Graham, 1981), where co-aggregation of internal noise has obscured these long-range interactions.
Resumo:
Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.
Resumo:
In this paper, we propose a resource allocation scheme to minimize transmit power for multicast orthogonal frequency division multiple access systems. The proposed scheme allows users to have different symbol error rate (SER) across subcarriers and guarantees an average bit error rate and transmission rate for all users. We first provide an algorithm to determine the optimal bits and target SER on subcarriers. Because the worst-case complexity of the optimal algorithm is exponential, we further propose a suboptimal algorithm that separately assigns bit and adjusts SER with a lower complexity. Numerical results show that the proposed algorithm can effectively improve the performance of multicast orthogonal frequency division multiple access systems and that the performance of the suboptimal algorithm is close to that of the optimal one. Copyright © 2012 John Wiley & Sons, Ltd. This paper proposes optimal and suboptimal algorithms for minimizing transmitting power of multicast orthogonal frequency division multiple access systems with guaranteed average bit error rate and data rate requirement. The proposed scheme allows users to have different symbol error rate across subcarriers and guarantees an average bit error rate and transmission rate for all users. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT