988 resultados para Optimization framework
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.
Resumo:
The purpose of this paper is to present a framework that increases knowledge sharing and collaboration in Higher Education Institutions. The paper discusses the concept of knowledge management in higher education institutions, presenting a systematization of knowledge practices and tools to linking people (students, teachers, researchers, secretariat staff, external entities)and promoting the knowledge sharing across several key processes and services in a higher education institution, such as: the research processes, learning processes, student and alumni services, administrative services and processes, and strategic planning and management. The framework purposed in this paper aims to improve knowledge practices and processes which facilitate an environment and a culture of knowledge collaboration,sharing and discovery that should characterize an institution of higher education.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Biotechnology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Atualmente, verifica-se um aumento na necessidade de software feito à medida do cliente, que se consiga adaptar de forma rápida as constantes mudanças da sua área de negócio. Cada cliente tem os seus problemas concretos que precisa de resolver, não lhe sendo muitas vezes possível dispensar uma elevada quantidade de recursos para atingir os fins pretendidos. De forma a dar resposta a estes problemas surgiram várias arquiteturas e metodologias de desenvolvimento de software, que permitem o desenvolvimento ágil de aplicações altamente configuráveis, que podem ser personalizadas por qualquer utilizador das mesmas. Este dinamismo, trazido para as aplicações sobre a forma de modelos que são personalizados pelos utilizadores e interpretados por uma plataforma genérica, cria maiores desafios no momento de realizar testes, visto existir um número de variáveis consideravelmente maior que numa aplicação com uma arquitetura tradicional. É necessário, em todos os momentos, garantir a integridade de todos os modelos, bem como da plataforma responsável pela sua interpretação, sem ser necessário o desenvolvimento constante de aplicações para suportar os testes sobre os diferentes modelos. Esta tese debruça-se sobre uma aplicação, a plataforma myMIS, que permite a interpretação de modelos orientados à gestão, escritos numa linguagem específica de domínio, sendo realizada a avaliação do estado atual e definida uma proposta de práticas de testes a aplicar no desenvolvimento da mesma. A proposta resultante desta tese permitiu verificar que, apesar das dificuldades inerentes à arquitetura da aplicação, o desenvolvimento de testes de uma forma genérica é possível, podendo as mesmas lógicas ser utilizadas para o teste de diversos modelos distintos.
Resumo:
Os videojogos são cada vez mais uma das maiores áreas da indústria de entretenimento, tendo esta vindo a expandir-se de ano para ano. Para além disso, os videojogos estão cada vez mais presentes no nosso dia-adia, quer através dos dispositivos móveis ou das novas consolas. Com base nesta premissa, é seguro de afirmar que o investimento neste campo trará mais ganhos do que perdas. Esta Dissertação tem como objetivo o estudo do estado da indústria dos videojogos, tendo como principal foco a conceção de um videojogo, a partir duma Framework Modular, desenvolvida também no âmbito desta Dissertação. Para isso, é feito um estudo sobre o estado da arte tecnológico, onde várias ferramentas de criação de videojogos foram estudadas e analisadas, de forma a perceber as forças e fraquezas de cada uma, e um estudo sobre a arte do negócio, ficando assim com uma ideia mais concreta dos vários pontos necessários para a criação de um videojogo. De seguida são discutidos os diferentes géneros de videojogos existentes e é conceptualizado um pequeno videojogo, tendo ainda em conta os diferentes tipos de interfaces que são mais utilizados na indústria dos videojogos, de forma a entender qual será a forma mais viável, conforme o género, e as diferentes mecânicas presentes no videojogo a criar. A Framework Modular é desenvolvida tendo em conta toda a análise previamente realizada, e o videojogo conceptualizado. Esta tem como grande objetivo uma elevada personalização e manutenibilidade, sendo que todos os módulos implementados podem ser substituídos por outros sem criar conflitos entre si. Finalmente, de forma a unir todos os temas analisados ao longo desta Dissertação, é ainda desenvolvido um Protótipo de forma a comprovar o bom funcionamento da Framework, aplicando todas as decisões previamente feitas.
Resumo:
We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.