997 resultados para Opal
Resumo:
In dieser Arbeit wird die Herstellung und Anwendung von funktionalen Polymer-Opalen beschrieben. Für die Synthese von funktionalen monodipsersen Kolloiden, den Bausteinen der Opale, wird die emulgatorfreie Emulsionspolymerisation (SFEP) verwendet. Je nach einzubauendem funktionalem Molekül werden verschiedene Varianten der SFEP verwendet, wie z. B. Homopolymerisation, Copolymerisation, Polymerisation mit Fremdstoffen und die Herstellung von Kern-Schale-Kolloiden. Die so hergestellten monodispersen Kolloide formen durch Selbstorganisation über horizontale (Aufpipettieren, Rakeln, Sprühen) oder vertikale Kristallisation (Ziehmaschine)hochqualitative künstliche Opale. Die eingebauten Funktionalitäten öffnen den Weg zu einer Vielzahl von Anwendungen. Über die Spaltung von funktionalen Estergruppen kann eine lichtinduzierte Strukturierung durchgeführt werden. Der Einbau von Epoxidgruppen ermöglicht eine makroskopische Vernetzung wodurch die mechanische Stabilität der Struktur erhöht wird. Der Einsatz von Reaktivestern kann zur Oberflächen- funktionalisierung verwendet werden. Durch Replizierung der Struktur zum inversen Opal können weitere funktionale Materialien eingeführt werden, was die Einsatzmöglichkeiten noch erweitert.
Resumo:
The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).
Resumo:
Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.
Resumo:
Analisi cinematica delle fasi del nuoto, velocità in vasca e body roll attraverso l'uso di sensori inerziali. Implementazione di innovativi algoritmi di calcolo con l'utilizzo del filtro di Kalman 3D, matrici di rotazione e quaternioni per la determinazione dei parametri fondamentali del nuoto e della posizione del polso nel sistema di riferimento di torace. Confronto dei risultati ottenuti mediante i diversi algoritmi e loro validazione con quelli ottenuti con l'uso della stereofotogrammetria. Gli algoritmi possono essere generalizzati ad altri gesti motori.
Resumo:
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global three-dimensional ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during the early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.
Resumo:
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.
Resumo:
myTU, eine persönliche Lernplattform für Smartphones, die seit 2011 an der Technischen Universität Bergakademie Freiberg im Einsatz ist, wird zukünftig mit neuen und erweiterten Funktionen ausgestattet. Ziel ist es eine generalisierte Lernplattform für alle Hochschulen anzubieten, die das BYOD-Konzept konsequent umsetzt. Ausgehend von der derzeitigen Struktur und Umfang des Projektes wird eine Verbindung mit OPAL geschaffen, das Layout und die Schnittstellen generalisiert, Funktionen erweitert und ein mehrstufiges Authentisierungskonzept entwickelt und integriert. Im Folgenden wird der Status Quo erläutert und neue Konzepte des Projektes vorgestellt.
Resumo:
Long-term trends of dissolved silicon (Si) concentrations in five glacial lakes in the Bohemian Forest, Czech Republic, recovering from acidification show higher mobility of Si from the soil to surface waters despite lower atmospheric deposition of acids. Si increased by 0.95 to 1.95 mu mol yr(-1) (36 to 51%) from 1986-2004 and with increasing pH. A change in soil solution conditions because of a sharp decrease in acidic deposition has led to marked decline in Al mobility and to considerable decreases in dissolved Al, especially Al3+. The increase in Si may be related to: (1) unblocking of the inhibitory effect of dissolved Al on weathering of alummosilicates, (2) biogenic opal (phytoliths) dissolving faster, and/or (3) lower Si precipitation as secondary alummosilicates in soil. The change in Al speciation on the dissolution rate of biogenic silica is critical. A lack of change in Si at sites outside central Europe may be explained by small or no decline in mobility of dissolved Al. The effect of a long-term increase in temperature was probably minor.
Resumo:
The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.
Resumo:
Modal public announcement logics study how beliefs change after public announcements. However, these logics cannot express the reason for a new belief. Justification logics fill this gap since they can formally represent evidence and justifications for an agent's belief. We present OPAL(K) and JPAL(K) , two alternative justification counterparts of Gerbrandy–Groeneveld's public announcement logic PAL(K) . We show that PAL(K) is the forgetful projection of both OPAL(K) and JPAL(K) . We also establish that JPAL(K) partially realizes PAL(K) . The question whether a similar result holds for OPAL(K) is still open.
Resumo:
In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the δ15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the δ15Ndb changes are not the result of changing species composition. The pennate and centric assemblage δ15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate δ15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.
Resumo:
For a reliable simulation of the time and space dependent CO2 redistribution between ocean and atmosphere an appropriate time dependent simulation of particle dynamics processes is essential but has not been carried out so far. The major difficulties were the lack of suitable modules for particle dynamics and early diagenesis (in order to close the carbon and nutrient budget) in ocean general circulation models, and the lack of an understanding of biogeochemical processes, such as the partial dissolution of calcareous particles in oversaturated water. The main target of ORFOIS was to fill in this gap in our knowledge and prediction capability infrastructure. This goal has been achieved step by step. At first comprehensive data bases (already existing data) of observations of relevance for the three major types of biogenic particles, organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica (BSi or opal), as well as for refractory particles of terrestrial origin were collated and made publicly available.
Resumo:
The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.