955 resultados para Oligomers, Supramolecular Chemistry, Solid Supported Synthesis, Blockcopolymers
Resumo:
TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.
Resumo:
The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.
Resumo:
Ethyl 5-oxo-2-phenyl-2,5-dihydroisoxazole-4-carboxylate (2) was photolysed at 300 mn in the presence of phenols, enols, anilines, enamines, aryl thiols and thioenols affording enamines. Treatment of these enamines with Lewis or protic acids gives the respective benzo and five-membered ring systems.
Resumo:
alpha-Aspartyl-containing cyclic pentapeptides were synthesised in high yields using a strategy that maintained fluorenylmethyl protection on the aspartic acid side chain during chain assembly, resin cleavage and cyclisation of the linear precursors. Tetra-n-butylammonium fluoride treatment of the fluorenylmethyl-protected cyclic peptides catalysed imide formation, whereas piperidine-induced deprotection resulted in good yields of the target cyclic peptides.
Resumo:
N-Acylisoxazol-5-ones lose carbon dioxide under photochemical and thermal conditions affording iminocarbenes which undergo intramolecular cyclisation through the oxygen of the acyl group to give oxazoles. Under photochemical conditions those acylisoxazolones with electron withdrawing groups at C-4 usually give high yields of oxazoles, while those with electron donating groups at C-4 give only poor yields: the reverse is observed under thermal conditions.
Resumo:
5-Oxodihydroisoxazoles react with thiocarbonyl chlorides to afford N-thioacylisoxazol-5(2H)-ones which lose carbon dioxide under photochemical conditions and undergo intramolecular cyclisation of the iminocarbene to afford thiazoles, However, in some cases loss of carbon dioxide is accompanied by loss of sulfur, giving 1,3-oxazin-6-ones.
Resumo:
To obtain methotrexate (MTX) derivatives with a balanced hydrolipophilic character, we synthesized a series of conjugates in which the drug was linked to lipoamino acid (LAA)-glucose residues (LAAG-MTX). These conjugates displayed increased solubility in polar media compared with the corresponding LAA-MTX conjugates previously described. In vitro biological testing of LAAG-MTX indicated that the introduction of the sugar moiety decreased the biological activity of these MTX conjugates. The tetradecyl derivative 6b, however, was effective in inhibiting the dihydrofolate reductase activity in vitro and showed an inhibitory effect on human lymphoblastoid cell growth. (C) 2001 Wiley-Liss, Inc.
Resumo:
Human S100A12 (extracellular newly identified RAGE (receptor for advanced glycosylation end products)binding protein), a new member of the S100 family of EF-hand calcium-binding proteins, was chemically synthesised using highly optimised 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/tert-butoxycarbonyl in situ neutralisation solid-phase chemistry. Circular dichroism studies indicated that CaCl2 decreased the helical content by 27% whereas helicity was marginally increased by ZnCl2. The propensity of S100A12 to dimerise was examined by electrospray ionisation time-of-flight mass spectrometry which clearly demonstrated the prevalence of the non-covalent homodimer (20 890 Da). Importantly, synthetic human S100A12 in the nanomolar range was chemotactic for neutrophils and macrophages in vitro. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Alumina intercalated laponite (Al-laponite) was prepared with a polyethylene oxide (PEO) surfactant and used as supports of nickel catalysts for the carbon dioxide reforming reaction with methane to synthesis gas. The effects of the supports of intercalated laponite and catalyst preparation on catalytic activity, stability and carbon deposition were investigated for the above reforming reaction. We found that the pore structure of the Al-laponite supports can be tailored with the surfactant and the catalyst with well-developed porosity exhibited higher catalytic activity and a longer time of catalyst stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile -Thr- (Gly)Thz-lle-Thr(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ1, determined by X-ray crystallography, has a saddle conformation with two close-to-co-parallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ1 with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu-2(H4L)(OH2)(n)](2+) (n = 6, 8) and [Cu-2(H4L)(OH2)(n)] (n=4, 6; L=PatN, PatL, PatJ1, PatJ2) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.
Resumo:
Solid-phase organic chemistry has rapidly expanded in the last decade, and, as a consequence, so has the need for the development of supports that can withstand the extreme conditions required to facilitate some reactions. The authors here prepare a thermally stable, grafted fluoropolymer support (see Figure for an example) in three solvents, and found that the penetration of the graft was greatest in dichloromethane.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.