976 resultados para Oil pollution of soils
Resumo:
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Information on the spatial distribution of particle size fractions is essential for use planning and management of soils. The aim of this work to was to study the spatial variability of particle size fractions of a Typic Hapludox cultivated with conilon coffee. The soil samples were collected at depths of 0-0.20 and 0.20-0.40 m in the coffee canopy projection, totaling 109 georeferentiated points. At the depth of 0.2-0.4 m the clay fraction showed average value significantly higher, while the sand fraction showed was higher in the depth of 0-0.20 m. The silt showed no significant difference between the two depths. The particle size fractions showed medium and high spatial variability. The levels of total sand and clay have positive and negative correlation, respectively, with the altitude of the sampling points, indicating the influence of landscape configuration.
Resumo:
Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.
Resumo:
Actualmente, a poluição do ar, água e solo são problemáticas nas quais se têm centrado diversos estudos. Reduzir ou eliminar a concentração dos diversos poluentes presentes nestes meios é uma meta que se pretende atingir. Neste âmbito, têm sido desenvolvidos diversos estudos e trabalhos, utilizando diversas tecnologias, como químicas e biológicas, de forma a conseguir-se atingir este fim. Esta tese teve como principal objectivo estudar a remediação de solos contaminados com produtos farmacêuticos recorrendo à oxidação/redução química. Assim, começou por se estudar a remediação de água contaminada com ibuprofeno, uma vez, que a matriz líquida é mais fácil de estudar que o solo. Neste âmbito escolheram-se os seguintes reagentes para estudar a descontaminação da água: permanganato de potássio, reagente de Fenton e nanopartículas de ferro zero valente. Analisando os resultados obtidos nestas análises, verificou-se que o permanganato de potássio não foi capaz de reduzir a concentração de ibuprofeno presente na água. No entanto, o reagente de Fenton e as nanopartículas produzidas a partir do extracto da casca de castanha e do chá conseguirem reagir com o ibuprofeno, apresentando taxas de degradação de 90 % e 77 %, respectivamente, nas melhores condições experimentadas. Com os resultados obtidos, passou-se a analisar solos contaminados com o ibuprofeno, utilizando o reagente de Fenton e as nanopartículas produzidas a partir de um extracto de chá. Verificou-se que estes reagentes conseguiram reduzir a concentração de ibuprofeno presente no solo (areia) para valores residuais, obtendo-se taxas de degradação acima de 95 % após 5 dias de reacção. Conclui-se que, o objectivo principal desta tese foi cumprido pois foi reduzida, e quase eliminada, a concentração do ibuprofeno presente no solo, recorrendo à oxidação/redução química.
Resumo:
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii1) remediation time; (ii2) remediation efficiency; and (ii3) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii1) increased remediation time (1.8–4.9 h, respectively); (ii2) decreased remediation efficiency (99–97%, respectively); and (ii3) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.
Resumo:
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8–13 h) and decreased the remediation efficiency (RE) (99–90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8–4.9 h) and decreased the RE (99–97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.
Resumo:
Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.
Resumo:
Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.
Resumo:
Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.
Resumo:
Passage of high-speed trains may induce high ground and track vibrations, which, besides increasing wheel, rail and track deterioration, may have a negative impact on the vehicle stability and on the passengers comfort. In this paper two distinct analyses are presented. The first one is dedicated to efficient decoupling of rail and soil vibrations by suggesting new interface materials in rail-sleeper fixing system, i.e. in the part where damping efficiency can be directly controlled and tested. The second analysis concerns with an adequate model of soils damping. Proper understanding and correct numerical simulation of this behaviour can help in suggesting soil improvement techniques.
Resumo:
Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark
Resumo:
Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
The increasing environmental concern about waste materials and the necessity of improving the performance of asphalt mixtures prompted the study of incorporating different waste materials in conventional bitumen. The reuse of waste materials can present benefits at an environmental and economic level, and some wastes can be used to improve the pavement performance. Thus, the purpose of this study is to evaluate the incorporation of different waste materials in bitumen, namely waste motor oil and different polymers. In order to accomplish this goal, 10% of waste motor oil and 5% of polymers (high density polyethylene, crumb rubber and styrene-butadiene-styrene) were added to a conventional bitumen and the resulting modified bitumens were characterized through basic and rheological tests. From this work, it can be concluded that the incorporation of different waste materials improve some important properties of the conventional bitumen. Such improvements might indicate a good behaviour at medium/high temperatures and an increase of fatigue and rutting resistance. Therefore, these modified bitumens with waste materials can contribute to a sustainable development of road paving industry due to their performance and environmental advantages.