971 resultados para ORDER-STATISTICS
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
Increasingly, domestic violence is being treated as a child protection issue, and children affected by domestic violence are recognised as experiencing a form of child abuse. Domestic violence protection order legislation – as a key legal response to domestic violence – may offer an important legal option for the protection of children affected by domestic violence. In this article, we consider the research that establishes domestic violence as a form of child abuse, and review the provisions of State and Territory domestic violence protection order legislation to assess whether they demonstrate an adequate focus on the protection of children.
Resumo:
Experts are increasingly being called upon to quantify their knowledge, particularly in situations where data is not yet available or of limited relevance. In many cases this involves asking experts to estimate probabilities. For example experts, in ecology or related fields, might be called upon to estimate probabilities of incidence or abundance of species, and how they relate to environmental factors. Although many ecologists undergo some training in statistics at undergraduate and postgraduate levels, this does not necessarily focus on interpretations of probabilities. More accurate elicitation can be obtained by training experts prior to elicitation, and if necessary tailoring elicitation to address the expert’s strengths and weaknesses. Here we address the first step of diagnosing conceptual understanding of probabilities. We refer to the psychological literature which identifies several common biases or fallacies that arise during elicitation. These form the basis for developing a diagnostic questionnaire, as a tool for supporting accurate elicitation, particularly when several experts or elicitors are involved. We report on a qualitative assessment of results from a pilot of this questionnaire. These results raise several implications for training experts, not only prior to elicitation, but more strategically by targeting them whilst still undergraduate or postgraduate students.
Resumo:
Estimating the prevalence of drink driving is a difficult task. Self‐reported drink driving indicates that drink driving is far more common than official statistics suggest. In order to promote a responsible attitude towards alcohol consumption and drink driving within the Queensland community, the Queensland Police Service, Queensland Health and Queensland Transport developed the ‘Drink Rite’ program (Queensland Police Service information sheet, 2009). However, the feasibility of the program is now in doubt as the National Health and Medical Research Council’s guidelines for alcohol consumption changed in 2009 to state “For healthy men and women, drinking no more than four standard drinks on a single occasion reduces the risk of alcohol‐related injury arising from that occasion” (NHMRC Publication, 2009, p. 51). As such, adhering to the NHMRC guidelines places restrictions on how the existing Drink Rite program can be operated (i.e. by reducing the number of standard drinks provided to participants from eight to four). It is arguable that a reduction in the number of alcoholic drinks provided to participants in the program will result in a large reduction in observed BAC readings. This, in turn, will lead to a potential loss of message content when discussing the variation in the effects of alcohol.
Resumo:
Background Influenza infection during pregnancy is associated with significant morbidity and mortality. Immunisation against influenza is recommended during pregnancy in several countries but uptake of vaccine is poor. There are limited data on vaccine uptake, and the determinants of vaccination, in Australian Aboriginal and/or Torres Islander women during pregnancy. This study aimed to establish an appropriate methodology and collect pilot data on vaccine uptake and attitudes towards, and perceptions of, maternal influenza vaccination in that population in order to inform the development of larger studies. Methods A mixed-methods study comprised of a cross-sectional survey and yarning circles (focus groups) amongst Aboriginal and Torres Strait Islander women attending two primary health care services. The women were between 28 weeks gestation and less than 16 weeks post-birth. These data were supplemented by data collected in an ongoing national Australian study of maternal influenza vaccination. Aboriginal research officers collected community data and data from the yarning circles which were based on a narrative enquiry framework. Descriptive statistics were used to analyse quantitative data and thematic analyses were applied to qualitative data. Results Quantitative data were available for 53 women and seven of these women participated in the yarning circles. The proportion of women who reported receipt of an influenza vaccine during their pregnancy was 9/53. Less than half of the participants (21/53) reported they had been offered the vaccine in pregnancy. Forty-three percent reported they would get a vaccine if they became pregnant again. Qualitative data suggested perceived benefits to themselves and their infants were important factors in the decision to be vaccinated but there was insufficient information available to women to make that choice. Conclusions The rates of influenza immunisation may continue to remain low for Aboriginal and/or Torres Strait Islander women during pregnancy. Access to services and recommendations by a health care worker may be factors in the lower rates. Our findings support the need for larger studies directed at monitoring and understanding the determinants of maternal influenza vaccine uptake during pregnancy in Australian Aboriginal and Torres Strait Islander women. This research will best be achieved using methods that account for the social and cultural contexts of Aboriginal and Torres Strait Islander communities in Australia.
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
A new transdimensional Sequential Monte Carlo (SMC) algorithm called SM- CVB is proposed. In an SMC approach, a weighted sample of particles is generated from a sequence of probability distributions which ‘converge’ to the target distribution of interest, in this case a Bayesian posterior distri- bution. The approach is based on the use of variational Bayes to propose new particles at each iteration of the SMCVB algorithm in order to target the posterior more efficiently. The variational-Bayes-generated proposals are not limited to a fixed dimension. This means that the weighted particle sets that arise can have varying dimensions thereby allowing us the option to also estimate an appropriate dimension for the model. This novel algorithm is outlined within the context of finite mixture model estimation. This pro- vides a less computationally demanding alternative to using reversible jump Markov chain Monte Carlo kernels within an SMC approach. We illustrate these ideas in a simulated data analysis and in applications.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Resumo:
Achieving knowledge-based urban development (KBUD) profoundly depends on not only encouraging the development of economic activities, but also strengthening the societal, environmental and governance bases of city-regions. In recent years, a number of global city-regions have been investigated from the angle of this multidimensional perspective, which has provided a new comprehension in the development processes of primate city-regions. However, there is a knowledge gap in understanding how KBUD works in the second-order city-region (SOCR) context. This warrants more attention as SOCRs potentially help secure balanced development and territorial cohesion. This paper aims to empirically investigate KBUD performances of SOCRs in order to generate new insights. An assessment framework is utilised in the Finnish context, where the findings provide a nationally benchmarked snapshot of the degree of achievements of SOCRs based on numerous KBUD performance areas. The results shed light on the unique Finnish urban and regional development process, and provide lessons for other SOCRs.