946 resultados para Numerical Model
Resumo:
A numerical model of sulfate reduction and isotopic fractionation has been applied to pore fluid SO4**2- and d34S data from four sites drilled during Ocean Drilling Program (ODP) Leg 168 in the Cascadia Basin at 48°N, where basement temperatures reach up to 62°C. There is a source of sulfate both at the top and the bottom of the sediment column due to the presence of basement fluid flow, which promotes bacterial sulfate reduction below the sulfate minimum zone at elevated temperatures. Pore fluid d34S data show the highest values (135 per mil) yet found in the marine environment. The bacterial sulfur isotopic fractionation factor, a, is severely underestimated if the pore fluids of anoxic marine sediments are assumed to be closed systems and Rayleigh fractionation plots yield erroneous values for a by as much as 15 per mil in diffusive and advective pore fluid regimes. Model results are consistent with a = 1.077+/-0.007 with no temperature effect over the range 1.8 to 62°C and no effect of sulfate reduction rate over the range 2 to 10 pmol/ccm/day. The reason for this large isotopic fractionation is unknown, but one difference with previous studies is the very low sulfate reduction rates recorded, about two orders of magnitude lower than literature values that are in the range of µmol/ccm/day to tens of nmol/ccm/day. In general, the greatest 34S depletions are associated with the lowest sulfate reduction rates and vice versa, and it is possible that such extreme fractionation is a characteristic of open systems with low sulfate reduction rates.
Resumo:
Cold and dense ice shelf water (ISW) emerging from the Filchner-Ronne Ice Shelf cavity in the southwestern Weddell Sea flows northward through the Filchner Depression to eventually descend the continental slope and contribute to the formation of bottom water. New ship-born observations of hydrography and currents from Filchner Depression in January 2013 suggest that the northward flow of ISW takes place in a middepth jet along the eastern flank of the depression, thus questioning the traditional view with outflow along the western flank. This interpretation of the data is supported by results from a regional numerical model, which shows that ISW flowing northward along the eastern coast of Berkner Island turns eastward and crosses the depression to its eastern side upon reaching the Filchner ice front. The ice front represents a sudden change in the thickness of the water column and thus a potential vorticity barrier. Transport estimates of northward ISW flux based on observations ranges from 0.2 to 1.0 Sv.
Resumo:
Oxygen minimum zones are expanding globally, and at present account for around 20-40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox-anaerobic ammonium oxidation with nitrite-are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.
Resumo:
Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.
Resumo:
The environmental impact of systems managing large (kg) tritium amount represents a public scrutiny issue for the next coming fusion facilities as ITER and DEMO. Furthermore, potentially new dose limits imposed by international regulations (ICRP) shall impact next coming devices designs and the overall costs of fusion technology deployment. Refined environmental tritium dose impact assessment schemes are then overwhelming. Detailed assessments can be procured from the knowledge of the real boundary conditions of the primary tritium discharge phase into atmosphere (low levels) and into soils. Lagrangian dispersion models using real-time meteorological and topographic data provide a strong refinement. Advance simulation tools are being developed in this sense. The tool integrates a numerical model output records from European Centre for Medium range Weather Forecast (ECMWF) with a lagrangian atmospheric dispersion model (FLEXPART). The composite model ECMWF/FLEXTRA results can be coupled with tritium dose secondary phase pathway assessment tools. Nominal tritium discharge operational reference and selected incidental ITER-like plant systems tritium form source terms have been assumed. The realtime daily data and mesh-refined records together with lagrangian dispersion model approach provide accurate results for doses to population by inhalation or ingestion in the secondary phase
Resumo:
Real time Tritium concentrations in air in two chemical forms, HT and HTO, coming from an ITER-like fusion reactor as source were coupled the European Centre Medium Range Weather Forecast (ECMWF) numerical model with the Lagrangian Atmospheric-particle dispersion model FLEXPART. This tool was analyzed in nominal tritium discharge operational reference and selected incidental conditions affecting the Western Mediterranean Basin during 45 days during summer 2010 together with surface “wind observations” or weather data based in real hourly observations of wind direction and velocity providing a real approximation of the tritium behavior after the release to the atmosphere from a fusion reactor. From comparison with NORMTRI - a code using climatologically sequences as input - over the same area, the real time results have demonstrated an apparent overestimation of the corresponding climatologically sequence of Tritium concentrations in air outputs, at several distances from the reactor. For this purpose two development patterns were established. The first one was following a cyclonic circulation over the Mediterranean Sea and the second one was based on the plume delivered over the Interior of the Iberian Peninsula and Continental Europe by another stabilized circulation corresponding to a High Pressure System. One of the important remaining activities defined then, was the qualification tool. In order to validate the model of ECMWF/FLEXPART we have developed of a new complete data base of tritium concentrations for the months from November 2010 to March 2011 and defined a new set of four patterns of HT transport in air, in each case using real boundary conditions: stationary to the North, stationary to the South, fast and very fast displacement. Finally the differences corresponding to those four early patterns (each one in assessments 1 and 2) has been analyzed in terms of the tuning of safety related issues and taking into account the primary phase o- - f tritium modeling, from its discharge to the atmosphere to the deposition on the ground, will affect to the complete tritium environmental pathway altering the chronic dose by absorption, reemission and ingestion both from elemental tritium, HT and from the oxide of tritium, HTO
Resumo:
Real time Tritium concentrations in air coming from an ITER-like reactor as source were coupled the European Centre Medium Range Weather Forecast (ECMWF) numerical model with the lagrangian atmospheric dispersion model FLEXPART. This tool ECMWF/FLEXPART was analyzed in normal operating conditions in the Western Mediterranean Basin during 45 days at summer 2010. From comparison with NORMTRI plumes over Western Mediterranean Basin the real time results have demonstrated an overestimation of the corresponding climatologically sequence Tritium concentrations in air outputs, at several distances from the reactor. For these purpose two clouds development patterns were established. The first one was following a cyclonic circulation over the Mediterranean Sea and the second one was based in the cloud delivered over the Interior of the Iberian Peninsula by another stabilized circulation corresponding to a High. One of the important remaining activities defined then, was the tool qualification. The aim of this paper is to present the ECMWF/FLEXPART products confronted with Tritium concentration in air data. For this purpose a database to develop and validate ECMWF/FLEXPART tritium in both assessments has been selected from a NORMTRI run. Similarities and differences, underestimation and overestimation with NORMTRI will allowfor refinement in some features of ECMWF/FLEXPART
Resumo:
Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and a low disturbances level such that unwanted transitional mechanisms are avoided. The studied boundary layers have been developed on a flat plate, by imposing a pressure gradient by means of contoured walls. They generate an initial acceleration region followed by a deceleration zone. The initial region is designed to obtain at the beginning of the deceleration the Blasius profile, characterized by its momentum thickness, and an edge boundary layer velocity, defining the problem characteristic velocity. The deceleration region is designed to obtain a linear evolution of the edge velocity, thereby defining the characteristic length of the problem. Several experimental techniques, both intrusive (hot wire anemometry, total pressure probes) as nonintrusive (PIV and LDV anemometry, high-speed filming), have been used in order to take advantage of each of them and allow cross-validation of the results. Once the boundary layer at the deceleration beginning has been characterized, ensuring the desired integral parameters and level of disturbance, the evolution of the laminar boundary layer up to the point of separation is studied. It has been compared with integral methods, and numerical simulations. In view of the results a new model for this evolution is proposed. Downstream from the separation, the flow near to the wall is configured as a shear layer that encloses low momentum recirculating fluid. The region where the shear layer remains laminar tends to be positioned to compensate the adverse pressure gradient associated with the imposed deceleration. Under these conditions, the momentum thickness remains almost constant. This laminar shear layer region extends up to where transitional phenomena appear, extension that scales with the momentum thickness at separation. These transitional phenomena are of inviscid type, similar to those found in free shear layers. The transitional region analysis begins with a study of the disturbances evolution in the linear growth region and the comparison of experimental results with a numerical model based on Linear Stability Theory for parallel flows and with data from other authors. The results’ coalescence for both the disturbances growth and the excited frequencies is stated. For the transition final stages the vorticity concentration into vortex blobs is found, analogously to what happens in free shear layers. Unlike these, the presence of the wall and the pressure gradient make the large scale structures to move towards the wall and quickly disappear under certain circumstances. In these cases, the recirculating flow is confined into a closed region saying the bubble is closed or the boundary layer reattaches. From the reattachment point, the fluid shows a configuration in the vicinity of the wall traditionally considered as turbulent. It has been observed that existing integral methods for turbulent boundary layers do not fit well to the experimental results, due to these methods being valid only for fully developed turbulent flow. Nevertheless, it has been found that downstream from the reattachment point the velocity profiles are self-similar, and a model has been proposed for the evolution of the integral parameters of the boundary layer in this region. Finally, the phenomenon known as bubble burst is analyzed. It has been checked the validity of existing models in literature and a new one is proposed. This phenomenon is blamed to the inability of the large scale structures formed after the transition to overcome with the adverse pressure gradient, move towards the wall and close the bubble. El estudio de capas límites transicionales con separación es de gran relevancia en distintas aplicaciones tecnológicas. Particularmente, en tecnología aeronáutica, aparecen en procesos claves, tales como el flujo alrededor de alas o álabes de turbomaquinaria. El objetivo de esta tesis es el estudio de estos flujos en situaciones representativas de las aplicaciones tecnológicas, ganando por un lado conocimiento sobre la fenomenología y los procesos físicos que aparecen y, por otra parte, desarrollando un modelo sencillo para el escalado de los mismos. Para conseguir este objetivo se han realizado ensayos en una instalación experimental de baja velocidad específicamente diseñada para asegurar un flujo homogéneo y con bajo nivel de perturbaciones, de modo que se evita el disparo de mecanismos transicionales no deseados. La capa límite bajo estudio se ha desarrollado sobre una placa plana, imponiendo un gradiente de presión a la misma por medio de paredes de geometría especificada. éstas generan una región inicial de aceleración seguida de una zona de deceleración. La región inicial se diseña para tener en al inicio de la deceleración un perfil de capa límite de Blasius, caracterizado por su espesor de cantidad de movimiento, y una cierta velocidad externa a la capa límite que se considera la velocidad característica del problema. La región de deceleración está concebida para que la variación de la velocidad externa a la capa límite sea lineal, definiendo de esta forma una longitud característica del problema. Los ensayos se han realizado explotando varias técnicas experimentales, tanto intrusivas (anemometría de hilo caliente, sondas de presión total) como no intrusivas (anemometrías láser y PIV, filmación de alta velocidad), de cara a aprovechar las ventajas de cada una de ellas y permitir validación cruzada de resultados entre las mismas. Caracterizada la capa límite al comienzo de la deceleración, y garantizados los parámetros integrales y niveles de perturbación deseados se procede al estudio de la zona de deceleración. Se presenta en la tesis un análisis de la evolución de la capa límite laminar desde el inicio de la misma hasta el punto de separación, comparando con métodos integrales, simulaciones numéricas, y proponiendo un nuevo modelo para esta evolución. Aguas abajo de la separación, el flujo en las proximidades de la pared se configura como una capa de cortadura que encierra una región de fluido recirculatorio de baja cantidad de movimiento. Se ha caracterizado la región en que dicha capa de cortadura permanece laminar, encontrando que se posiciona de modo que compensa el gradiente adverso de presión asociado a la deceleración de la corriente. En estas condiciones, el espesor de cantidad de movimiento permanece prácticamente constante y esta capa de cortadura laminar se extiende hasta que los fenómenos transicionales aparecen. Estos fenómenos son de tipo no viscoso, similares a los que aparecen en una capa de cortadura libre. El análisis de la región transicional comienza con un estudio de la evolución de las vii viii RESUMEN perturbaciones en la zona de crecimiento lineal de las mismas y la comparación de los resultados experimentales con un modelo numérico y con datos de otros autores. La coalescencia de los resultados tanto para el crecimiento de las perturbaciones como para las frecuencias excitadas queda demostrada. Para los estadios finales de la transición se observa la concentración de la vorticidad en torbellinos, de modo análogo a lo que ocurre en capas de cortadura libres. A diferencia de estas, la presencia de la pared y del gradiente de presión hace que, bajo ciertas condiciones, la gran escala se desplace hacia la pared y desaparezca rápidamente. En este caso el flujo recirculatorio queda confinado en una región cerrada y se habla de cierre de la burbuja o readherencia de la capa límite. A partir del punto de readherencia se tiene una configuración fluida en las proximidades de la pared que tradicionalmente se ha considerado turbulenta. Se ha observado que los métodos integrales existentes para capas límites turbulentas no ajustan bien a las medidas experimentales realizadas, hecho imputable a que no se obtiene en dicha región un flujo turbulento plenamente desarrollado. Se ha encontrado, sin embargo, que pasado el punto de readherencia los perfiles de velocidad próximos a la pared son autosemejantes entre sí y se ha propuesto un modelo para la evolución de los parámetros integrales de la capa límite en esta región. Finalmente, el fenómeno conocido como “estallido” de la burbuja se ha analizado. Se ha comprobado la validez de los modelos existentes en la literatura y se propone uno nuevo. Este fenómeno se achaca a la incapacidad de la gran estructura formada tras la transición para vencer el gradiente adverso de presión, desplazarse hacia la pared y cerrar la burbuja.
Resumo:
In the present work a seismic retrofitting technique is proposed for masonry infilled reinforced concrete frames based on the replacement of infill panels by K-bracing with vertical shear link. The performance of this technique is evaluated through experimental tests. A simplified numerical model for structural damage evaluation is also formulated according to the notions and principles of continuum damage mechanics. The proposed model is calibrated with the experimental results. The experimental results have shown an excellent energy dissipation capacity with the proposed technique. Likewise, the numerical predictions with the proposed model are in good agreement with experimental results.
Resumo:
Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.
Resumo:
Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop.
Resumo:
The effect of quantum dot (QD) size on the performance of quantum dot intermediate band solar cells is investigated. A numerical model is used to calculate the bound state energy levels and the absorption coefficient of transitions from the ground state to all other states in the conduction band. Comparing with the current state of the art, strong absorption enhancements are found for smaller quantum dots, as well as a better positioning of the energy levels, which is expected to reduce thermal carrier escape. It is concluded that reducing the quantum dot size can increase sub-bandgap photocurrent and improve voltage preservation.
Resumo:
There is a growing trend towards using thinner wafers in order to reduce the costs of solar energy. But the current tools employed during the solar cells production are not prepared to work with thinner wafers, decreasing the industrial yield due to the high number of wafers broken. To develop new tools, or modify existing ones, the mechanical properties have to be determined. This paper tackles an experimental study of the mechanical properties of wafers. First, the material characteristics are detailed and the process to obtain wafers is presented. Then, the complete test setup and the mechanical strength results interpreted by a described numerical model are shown.
Resumo:
This work shows a numerical procedure for bond between indented wires and concrete, and the coupled splitting of the concrete. The bond model is an interface, non-associative, plasticity model. It is coupled with a cohesive fracture model for concrete to take into account the splitting of such concrete. The radial component of the prestressing force, increased by Poisson’s effect, may split the surrounding concrete, decreasing the wire confinement and diminishing the bonding. The combined action of the bond and the splitting is studied with the proposed model. The results of the numerical model are compared with the results of a series of tests, such as those which showed splitting induced by the bond between wire and concrete. Tests with different steel indentation depths were performed. The numerical procedure accurately reproduces the experimental records and improves knowledge of this complex process.
Resumo:
In tunnel construction, as in every engineering work, it is usual the decision making, with incomplete data. Nevertheless, consciously or not, the builder weighs the risks (even if this is done subjectively) so that he can offer a cost. The objective of this paper is to recall the existence of a methodology to treat the uncertainties in the data so that it is possible to see their effect on the output of the computational model used and then to estimate the failure probability or the safety margin of a structure. In this scheme it is possible to include the subjective knowledge on the statistical properties of the random variables and, using a numerical model consistent with the degree of complexity appropiate to the problem at hand, to make rationally based decisions. As will be shown with the method it is possible to quantify the relative importance of the random variables and, in addition, it can be used, under certain conditions, to solve the inverse problem. It is then a method very well suited both to the project and to the control phases of tunnel construction.