934 resultados para Nuisance algae
Resumo:
The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d− 1 for the university hospital, 155 g d− 1 for the general one, 14 g d− 1 for the pediatric hospital and 1.5 g d− 1 for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Gestão de Sistemas Ambientais
Resumo:
Mestrado integrado em Engenharia do Ambiente, perfil: Gestão de Sistemas Ambientais
Resumo:
FEMS Microbiology Ecology, Vol. 57, nº 1
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Conservação e Restauro pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Bioenergia
Resumo:
Ecological Water Quality - Water Treatment and Reuse
Resumo:
The occurrence of seven pharmaceuticals and two metabolites belonging to non-steroidal anti-inflammatory drugs and analgesics therapeutic classes was studied in seawaters. A total of 101 samples covering fourteen beaches and five cities were evaluated in order to assess the spatial distribution of pharmaceuticals among north Portuguese coast. Seawaters were selected in order to embrace different bathing water quality (excellent, good and sufficient). Acetaminophen, ketoprofen and the metabolite hydroxyibuprofen were detected in all the seawater samples at maximum concentrations of 584, 89.7 and 287 ng L− 1, respectively. Carboxyibuprofen had the highest seawater concentration (1227 ng L− 1). The temporal distribution of the selected pharmaceuticals during the bathing season showed that, in general, higher concentrations were detected in August and September. The environmental risk posed by the pharmaceuticals detected in seawaters towards different trophic levels (fish, daphnids and algae) was also assessed. Only diclofenac showed hazard quotients above one for fish, representing a potential risk for aquatic organisms. These results were observed in seawaters classified as excellent bathing water. Additional data is needed in order to support the identification and prioritization of risks posed by pharmaceuticals in marine environment.
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
We evaluated the antiviral activity of the marine alga, Ulva fasciata, collected from Rasa beach and Forno beach, Búzios, Rio de Janeiro, Brazil on the replication of human metapneumovirus (HMPV). The algae extracts were prepared using three different methodologies to compare the activity of different groups of chemical composites obtained through these different methodologies. Four out of the six extracts inhibited nearly 100% of viral replication. The results demonstrated that the majority of the extracts (five out of six) possess virucidal activity and therefore have the ability to interact with the extracellular viral particles and prevent the infection. On the other hand, only two extracts (from Forno beach, obtained by maceration and maceration of the decoction) were able to interact with cell receptors, hindering the viral entry. Finally, only the extract of algae collected at Forno beach, obtained by maceration presented intracellular activity. To our knowledge, this is a pioneer study on antiviral activity of marine algae against HMPV. It is also the first on antiviral activity against HMPV ever done in Brazil. The study also shows the effect of different environment factors and different chemical procedures used to obtain the extract on its biological properties.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry.
Resumo:
Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.
Resumo:
Twenty-eoght algal samples were collected in September-October, 1984, from two distinct habitats in the state of Acre, Brazil. Eleven were from the Moa River, and 17 were from a sulfur water spring which flows into the Moa River. A total of 74 species, representing 48 genera of algae, were identified from these samples. Forty-nine species were found in the Moa River and 67 in the sulfur water spring. Both coolection site had rich assemblages of cyanophycean algae, chlorophycean algae, and diatoms. Chlorophycean species dominated the algae flora at both sites, cut were more numerous at the sulfur water spring. There was also a definite difference in the relatives proportions of desmids to filamentous chlorophycean algae at the two sites.