966 resultados para Not angels, but Anglicans : a history of Christianity in the British Isles
Resumo:
Earlier reports have shown that cdc2 kinase is activated in cells infected with herpes simplex virus 1 and that the activation is mediated principally by two viral proteins, the infected cell protein 22 (ICP22) and the protein kinase encoded by UL13. The same proteins are required for optimal expression of a subset of late (γ2) genes exemplified by US11. In this study, we used a dominant-negative cdc2 protein to determine the role of cdc2 in viral gene expression. We report the following. (i) The cdc2 dominant-negative protein had no effect in the synthesis and accumulation of at least two α-regulatory proteins (ICP4 and ICP0), two β-proteins (ribonucleotide reductase major subunit and single-stranded DNA-binding protein), and two γ1-proteins (glycoprotein D and viral protease). US11, a γ2-protein, accumulated only in cells in which cdc2 dominant-negative protein could not be detected or was made in very small amounts. (ii) The sequence of amino acids predicted to be phosphorylated by cdc2 is present in at least 27 viral proteins inclusive of the regulatory proteins ICP4, ICP0, and ICP22. In in vitro assays, we demonstrated that cdc2 specifically phosphorylated a polypeptide consisting of the second exon of ICP0 but not a polypeptide containing the sequence of the third exon as would be predicted from the sequence analysis. We conclude that cdc2 is required for optimal expression of a subset of γ2-proteins whose expression is also regulated by the viral proteins (ICP22 and UL13) that mediate the activation of cdc2 kinase.
Resumo:
Early experiences such as prenatal stress significantly influence the development of the brain and the organization of behavior. In particular, prenatal stress impairs memory processes but the mechanism for this effect is not known. Hippocampal granule neurons are generated throughout life and are involved in hippocampal-dependent learning. Here, we report that prenatal stress in rats induced lifespan reduction of neurogenesis in the dentate gyrus and produced impairment in hippocampal-related spatial tasks. Prenatal stress blocked the increase of learning-induced neurogenesis. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for psychopathological vulnerabilities in aging.
Resumo:
Trypanosoma brucei, the protozoan parasite causing sleeping sickness, is transmitted by a tsetse fly vector. When the tsetse takes a blood meal from an infected human, it ingests bloodstream form trypanosomes that quickly differentiate into procyclic forms within the fly's midgut. During this process, the parasite loses the 107 molecules of variant surface glycoprotein that formed its surface coat, and it develops a new coat composed of several million procyclin molecules. Procyclins, the products of a small multigene family, are glycosyl phosphatidylinositol-anchored proteins containing characteristic amino acid repeats at the C terminus [either EP (EP procyclin, a form of procyclin rich in Glu-Pro repeats) or GPEET (GPEET procyclin, a form of procyclin rich in Glu-Pro-Glu-Glu-Thr repeats)]. We have used a sensitive and accurate mass spectrometry method to analyze the appearance of different procyclins during the establishment of midgut infections in tsetse flies. We found that different procyclin gene products are expressed in an orderly manner. Early in the infection (day 3), GPEET2 is the only procyclin detected. By day 7, however, GPEET2 disappears and is replaced by several isoforms of glycosylated EP, but not the unglycosylated isoform EP2. Unexpectedly, we discovered that the N-terminal domains of all procyclins are quantitatively removed by proteolysis in the fly, but not in culture. These findings suggest that one function of the protease-resistant C-terminal domain, containing the amino acid repeats, is to protect the parasite surface from digestive enzymes in the tsetse fly gut.
Resumo:
The binding of killer cell Ig-like Receptors (KIR) to their Class I MHC ligands was shown previously to be characterized by extremely rapid association and dissociation rate constants. During experiments to investigate the biochemistry of receptor–ligand binding in more detail, the kinetic parameters of the interaction were observed to alter dramatically in the presence of Zn2+ but not other divalent cations. The basis of this phenomenon is Zn2+-induced multimerization of the KIR molecules as demonstrated by BIAcore, analytical ultracentrifugation, and chemical cross-linking experiments. Zn2+-dependent multimerization of KIR may be critical for formation of the clusters of KIR and HLA-C molecules, the “natural killer (NK) cell immune synapse,” observed at the site of contact between the NK cell and target cell.
Resumo:
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Resumo:
The Brn-3 subfamily of POU domain genes are expressed in sensory neurons and in select brainstem nuclei. Earlier work has shown that targeted deletion of the Brn-3b and Brn-3c genes produce, respectively, defects in the retina and in the inner ear. We show herein that targeted deletion of the Brn-3a gene results in defective suckling and in uncoordinated limb and trunk movements, leading to early postnatal death. Brn-3a (-/-) mice show a loss of neurons in the trigeminal ganglia, the medial habenula, the red nucleus, and the caudal region of the inferior olivary nucleus but not in the retina and dorsal root ganglia. In the trigeminal and dorsal root ganglia, but not in the retina, there is a marked decrease in the frequency of neurons expressing Brn-3b and Brn-3c, suggesting that Brn-3a positively regulates Brn-3b and Brn-3c expression in somatosensory neurons. Thus, Brn-3a exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. The pheno-types of Brn-3a, Brn-3b, and Brn-3c mutant mice indicate that individual Brn-3 genes have evolved to control development in the auditory, visual, or somatosensory systems and that despite differences between these systems in transduction mechanisms, sensory organ structures, and central information processing, there may be fundamental homologies in the genetic regulatory events that control their development.
Resumo:
The dynamics of proton binding to the extracellular and the cytoplasmic surfaces of the purple membrane were measured by laser-induced proton pulses. Purple membranes, selectively labeled by fluorescein at Lys-129 of bacteriorhodopsin, were pulsed by protons released in the aqueous bulk from excited pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) and the reaction of protons with the indicators was measured. Kinetic analysis of the data imply that the two faces of the membrane differ in their buffer capacities and in their rates of interaction with bulk protons. The extracellular surface of the purple membrane contains one anionic proton binding site per protein molecule with pK = 5.1. This site is within a Coulomb cage radius (approximately 15 A) from Lys-129. The cytoplasmic surface of the purple membrane bears 4-5 protonable moieties (pK = 5.1) that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3.10(10) M-1.s-1). The proximity between the elements is sufficiently high that even in 100 mM NaCl they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. The protonation dynamics determined at the surface of the purple membrane is of relevance both for the vectorial proton transport mechanism of bacteriorhodopsin and for energy coupling, not only in halobacteria, but also in complex chemiosmotic systems such as mitochondrial and thylakoid membranes.
Resumo:
Multidrug-resistance-associated protein (MRP) is a plasma membrane glycoprotein that can confer multidrug resistance (MDR) by lowering intracellular drug concentration. Here we demonstrate that depletion of intracellular glutathione by DL-buthionine (S,R)-sulfoximine results in a complete reversal of resistance to doxorubicin, daunorubicin, vincristine, and VP-16 in lung carcinoma cells transfected with a MRP cDNA expression vector. Glutathione depletion had less effect on MDR in cells transfected with MDR1 cDNA encoding P-glycoprotein and did not increase the passive uptake of daunorubicin by cells, indicating that the decrease of MRP-mediated MDR was not due to nonspecific membrane damage. Glutathione depletion resulted in a decreased efflux of daunorubicin from MRP-transfected cells, but not from MDR1-transfected cells, suggesting that glutathione is specifically required for the export of drugs from cells by MRP. We also show that MRP increases the export of glutathione from the cell and this increased export is further elevated in the presence of arsenite. Our results support the hypothesis that MRP functions as a glutathione S-conjugate carrier.
Resumo:
This article advocates for a fundamental re-understanding about the way that the history of race is understood by the current Supreme Court. Represented by the racial rights opinions of Justice John Roberts that celebrate racial progress, the Supreme Court has equivocated and rendered obsolete the historical experiences of people of color in the United States. This jurisprudence has in turn reified the notion of color-blindness, consigning racial discrimination to a distant and discredited past that has little bearing to how race and inequality is experienced today. The racial history of the Roberts Court is centrally informed by the context and circumstances surrounding Brown v. Board of Education. For the Court, Brown symbolizes all that is wrong with the history of race in the United States - legal segregation, explicit racial discord, and vicious and random acts of violence. Though Roberts Court opinions suggest that some of those vestiges still exits, the bulk of its jurisprudence indicate the opposite. With Brown’s basic factual premises as its point of reference, the Court has consistently argued that the nation has made tremendous strides away from the condition of racial bigotry, intolerance, and inequity. The article accordingly argues that the Roberts Court reliance on Brown to understand racial progress is anachronistic. Especially as the nation’s focus for racial inequality turned national in scope, the same binaries in Brown that had long served to explain the history of race relations in the United States (such as Black-White, North-South, and Urban-Rural) were giving way to massive multicultural demographic and geographic transformations in the United States in the years and decades after World War II. All of the familiar tropes so clear in Brown and its progeny could no longer fully describe the current reality of shifting and transforming patterns of race relations in the United States. In order to reclaim the history of race from the Roberts Court, the article assesses a case that more accurately symbolizes the recent history and current status of race relations today: Keyes v. School District No. 1. This was the first Supreme Court case to confront how the binaries of cases like Brown proved of little probative value in addressing how and in what ways race and racial discrimination was changing in the United States. Thus, understanding Keyesand the history it reflects reveals much about how and in what ways the Roberts Court should rethink its conclusions regarding the history of race relations in the United States for the last 60 years.
Resumo:
Differential SAR Interferometry (DInSAR) is a remote sensing method with the well demonstrated ability to monitor geological hazards like earthquakes, landslides and subsidence. Among all these hazards, subsidence involves the settlement of the ground surface affecting wide areas. Frequently, subsidence is induced by overexploitation of aquifers and constitutes a common problem that affects developed societies. The excessive pumping of underground water decreases the piezometric level in the subsoil and, as a consequence, increases the effective stresses with depth causing a consolidation of the soil column. This consolidation originates a settlement of ground surface that must be withstood by civil structures built on these areas. In this paper we make use of an advanced DInSAR approach - the Coherent Pixels Technique (CPT) [1] - to monitor subsidence induced by aquifer overexploitation in the Vega Media of the Segura River (SE Spain) from 1993 to the present. 28 ERS-1/2 scenes covering a time interval of about 10 years were used to study this phenomenon. The deformation map retrieved with CPT technique shows settlements of up to 80 mm at some points of the studied zone. These values agree with data obtained by means of borehole extensometers, but not with the distribution of damaged buildings, well points and basements, because the occurrence of damages also depends on the structural quality of the buildings and their foundations. The most interesting relationship observed is the one existing between piezometric changes, settlement evolution and local geology. Three main patterns of ground surface and piezometric level behaviour have been distinguished for the study zone during this period: 1) areas where deformation occurs while ground conditions remain altered (recent deformable sediments), 2) areas with no deformation (old and non-deformable materials), and 3) areas where ground deformation mimics piezometric level changes (expansive soils). The temporal relationship between deformation patterns and soil characteristics has been analysed in this work, showing a delay between them. Moreover, this technique has allowed the measurement of ground subsidence for a period (1993-1995) where no instrument information was available.
Resumo:
We study the relationship between age, metallicity, and α-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpcto 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages >9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more α-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Resumo:
3
Resumo:
v.17:no.1(1967)
Resumo:
Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.
Resumo:
The relationship between employer and worker is not only obligatory but above all, as Sinzheimer said, a ‘relationship of power’. In the Digital Age this statement is confirmed by the massive introduction of ICT in most of the companies that increase, in practice, employer’s supervisory powers. This is a worrying issue for two reasons: on one hand, ICT emerge as a new way to weaken the effectiveness of fundamental rights and the right to dignity of workers; and, on the other hand, Spanish legal system does not offer appropriate solutions to ensure that efficacy. Moreover, in a scenario characterized by a hybridization of legal systems models –in which traditional hard law methods are combined with soft law and self regulation instruments–, the role of our case law has become very important in this issue. Nevertheless, despite the increase of judicialization undergone, solutions offered by Courts are so different that do not give enough legal certainty. Facing this situation, I suggest a methodological approach –using Alchourron and Bulygin’s normative systems theory and Alexy’s fundamental rights theory– which can open new spaces of decision to legal operators in order to solve properly these problems. This proposal can allow setting a policy that guarantees fundamental rights of workers, deepening their human freedom in companies from the Esping-Andersen’s de-commodification perspective. With this purpose, I examine electronic communications in the company as a case study.